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 Abstract
  Vision-Language models (VLMs), i.e., image-text pairs of CLIP, have 
boosted image-based Deep Learning (DL). Unseen images by transferring 
semantic knowledge from seen classes can be dealt with the help of 
language models pre-trained only with texts. Two-dimensional spatial 
relationships and a higher semantic level have been performed. Moreover, 
Visual-Question-Answer (VQA) tools and open-vocabulary semantic 
segmentation provide us with more detailed scene descriptions, i.e., 
qualitative texts, in captions. However, the capability of VLMs presents still 
far from that of human perception. This paper proposes PanopticCAP for 
refined and enriched qualitative and quantitative captions to make them 
closer to what human recognizes by combining multiple DLs and VLMs. In 
particular, captions with physical scales and objects’ surface properties are 
integrated by water level, counting, depth map, visibility distance, and road 
conditions. Fine-tuned VLM models are also used. An iteratively refined 
caption model with a new physics-based contrastive loss function is used. 
Experimental results using images with adversarial weather conditions, 
i.e., rain, snow, fog, landslide, flooding, and traffic events, i.e., accidents, 
outperform state-of-the-art DLs and VLMs. A higher semantic level in 
captions for real-world scene descriptions is shown.

Proposed PanopticCAP Refined segmentation and classification

Conclusion
This paper has proposed PanopticCAP with multiple DL and VLM models, which 
consist of branched structures for efficiency in light of memory, training, and 
maintenance. It is the first time to contain dynamic changes in captions with physical 
scales, i.e., depth, fog visibility distance, weather conditions, water level, and road 
conditions. A physics-based loss function generates more refined and enriched 
captions at a contrastive loss. PanopticCAP will help notify detailed scene descriptions 
to drivers, auto-driving, and rescue workers from camera images.

Low quality images to be rejected by proposed Danomal

     Lens reflection  Strong headlight    Raindrops

Refined road conditions by proposed 
PanopticRoad
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Caption refinement with multi-DL models, combine physical 
constraints:
- Multi-DL models: 

DeepSnow (Dsnow): snow status detection
DeepVis (Dvis): visibitily estimation
DeepRoad (Droad): road condition evaluation
Deep vision-language classification (Dvlc): v-l based classifier
Deep vision-language segmentation (Dvls): v-l based 
segmentator
DeepScene (Dscene): semantic segmentation.

- Physical constraint: object sizes and locations.

Contrastive Language Physical-Scale Pretraining 
(CLPP)

SOTAs can’t correctly caption under Dynamic Disaster 
Scene: flooding, fog, rain, landslide, and car crash.
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Dataset/Method PanopticCAP Visual ChatGPT

Disaster 0.4521 0.3124

Traffic accident 0.4315 0.3254

car crash Flooding Landslide

road flow Foggy strong light

Using BLUE score to compare on test dataset 2: two collected dataset, i.e., 
Disaster with 1850 image, and Traffic accident with 2130 images.

　PanopticCAP has outperformed Visual ChatGPT.

Input PanopticCAP ZegFomer OvSeg ClipSeg

Proposed method BLIP [216]
(1) Rocks lay on the flooding road A flooded road in the rain
(2) Rock debris lay on the wet road, within clear visibility A road in the rain with rocks and 

debris on the side
(3) 15 vehicles on the wet highway, under heavy snowfall A snowstorm on a highway

(4) A truck on the wet highway, snow on
the side of the highway, under heavy snowfall

A snow plow clears a road in the 
snow

(5) 12 people stand on a flooded road, and 0.5m water level (Lv2) A group of people on flooded road

Input image PanopticCAP Mask2Former

Contributions
1) PanopticCAP with multiple Deep Learning models
2) Combination of Deep Visual Lang. Seg. and Class.
3) The first time to contain dynamic changes with 

physical scales, i.e., depth, size, visibility, and water 
level.

4) Captions with 3D-related adverbs, i.e., behind, rear, 
in front of, and far, enable to generate as SOTAs 
have used 2D-related adverbs, i.e., left and right..

5) More quantitative texts for auto-driving and rescue 
workers from camera images

Input image Dvls MaskDINO OVSeg

Image SOTA Proposed

(1) table, chair fell chair

(2) snow, rain water

(3) rock-merged, rain landslide

(4) couch couch, broken 
area

(5) tree-merged, 
typhoon strong wind

Dvls can segment car crash, strong 
wind, landslide. SOTA only can 
segment general objects.

Classes/
model

Dvlc 
(%)

CLPP
(%)

ViT 
(%)

Resnet10
1

(%)

Vgg19
(%)

Car crashes 93.37 92.54 92.41 91.12 87.67
Flooding 90.69 90.02 89.23 87.83 86.54

Fog 92.98 89.56 91.19 86.77 85.23
Landslide 89.52 87.56 87.63 87.19 84.89

Rain 92.33 89.67 87.58 88.92 83.11
Normal

94.67 90.46 92.57 91.23 84.02
Average

91.78 88.47 89.61 88.37 85.49

Dvlc outperforms other models

The caption results of PanopticCAP contain physical scales, i.e., the 
number of vehicles, visibility and water level in meter.

The caption results of PanopticCAP contain physical scales, i.e., the 
number of vehicles, visibility and water level in meter.
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Using BLUE score to compare on test dataset 2: two collected dataset, i.e., 
Disaster with 1850 image, and Traffic accident with 2130 images.

　PanopticCAP has outperformed Visual ChatGPT.

Input PanopticCAP ZegFomer OvSeg ClipSeg

Proposed method BLIP [216]
(1) Rocks lay on the flooding road A flooded road in the rain
(2) Rock debris lay on the wet road, within clear visibility A road in the rain with rocks and 

debris on the side
(3) 15 vehicles on the wet highway, under heavy snowfall A snowstorm on a highway

(4) A truck on the wet highway, snow on
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(5) 12 people stand on a flooded road, and 0.5m water level (Lv2) A group of people on flooded road

Input image PanopticCAP Mask2Former

Contributions
1) PanopticCAP with multiple Deep Learning models
2) Combination of Deep Visual Lang. Seg. and Class.
3) The first time to contain dynamic changes with 

physical scales, i.e., depth, size, visibility, and water 
level.

4) Captions with 3D-related adverbs, i.e., behind, rear, 
in front of, and far, enable to generate as SOTAs 
have used 2D-related adverbs, i.e., left and right..
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Input image Dvls MaskDINO OVSeg

Image SOTA Proposed

(1) boat, truck car crash

(2) snow, rain water

(3) rock-merged, rain landslide

(4) pavement-merged, 
rain rain

(5) tree-merged, 
typhoon strong wind

Dvls can segment car crash, strong 
wind, landslide. SOTA only can 
segment general objects.

Classes/
model

Dvlc 
(%)

CLPP
(%)

ViT 
(%)

Resnet10
1

(%)

Vgg19
(%)

Car crashes 93.37 92.54 92.41 91.12 87.67
Flooding 90.69 90.02 89.23 87.83 86.54

Fog 92.98 89.56 91.19 86.77 85.23
Landslide 89.52 87.56 87.63 87.19 84.89

Rain 92.33 89.67 87.58 88.92 83.11
Normal

94.67 90.46 92.57 91.23 84.02
Average

91.78 88.47 89.61 88.37 85.49

Dvlc outperforms other models

The caption results of PanopticCAP contain physical scales, i.e., the 
number of vehicles, visibility and water level in meter.

The caption results of PanopticCAP contain physical scales, i.e., the 
number of vehicles, visibility and water level in meter.


