

Competing for Shareable Arms in Multi-Player Multi-Armed Bandits

Renzhe Xu, Haotian Wang, Xingxuan Zhang, Bo Li, Peng Cui

- Content providers choose to generate contents with various topics
- The demand for each content topic is **constant and unknown** to content providers
- Content providers **compete for exposure**
 - When several content providers choose the same topic, they share the total exposure of the topic
 - Each content provider aims to maximize his own total exposure •

• Motivating example — competence between content providers in recommender systems (e.g., TikTok)

Problem formulation

• A novel multi-player multi-armed bandit (MPMAB) setting with an averaging allocation model

- Nagents (content providers) and K arms (content topics)
 - Each agent aims to maximize his own total reward after T rounds
 - Arm k has expected reward μ_k (expected total exposure of each topic)
- At round $t \in [T]$
 - Agent *j* pulls arm $\pi_i(t)$ selfishly and gets reward $R_i(t)$ The reward of arm *k* at round *t* The number of agents that pull arm k at round t

Expected reward earned by an agent that pulls arm k at round t

$$[M_k(t)] = \frac{X_k(t)}{M_k(t)}$$

Problem formulation

• Target — a policy for each agent

- Properties when all players follow the policy
 - Convergence to the equilibrium at each round
 - Low regret for each player
- Robust to a single agent's strategic deviation
 - Strategic deviation of a single agent can not bring significant changes to himself and other agents

• Equilibrium at each round when arms' expected rewards are known

- The pure Nash equilibrium (PNE) exists
- rewards
- More explanation of the equilibrium
 - Content providers tend to create contents with popular topics
- Online policy for agents
 - each agent

Proposed method

• The numbers of agents that choose each arm are proportional to the arms' expected

• Propose a novel alternate exploration based method to maximize the total rewards for

• Theoretical guarantee

- Properties when all players follow the policy \bullet
 - **Convergence**: Number of non-equilibrium rounds are $O(\log T)$ ullet
 - **Regret** for each player is $O(\log T)$ \bullet
 - Match the lower bound under several mild assumptions
- Strategic deviation of a single agent can not bring significant changes to himself and other agents
 - The policy is an ϵ -Nash equilibrium with $\epsilon = O(\log T)$
 - (β, ϵ) -stable
 - If an agent wants to incur a considerable loss *u* to another agent, then he will also suffer from a comparable loss of at least $\beta u - \epsilon$.
 - β is a constant and $\epsilon = O(\log T)$.

Proposed method

Conclusion

- Propose a novel MPMAB setting with an averaging allocation model to characterize the selfish behaviors of agents
- Analyze the Nash equilibrium of the problem at each round and develop an **online policy** for each agent
- Prove the following statements

 - The policy achieves a good regret guarantee when all players follow the policy • Any selfish player can not bring significant changes in rewards for himself and other players by deviation

Thanks for listening!

Renzhe Xu, Ph.D. candidate at Tsinghua University Paper: <u>https://arxiv.org/abs/2305.19158</u> Code: <u>https://github.com/windxrz/smaa</u> Email: <u>xrz199721@gmail.com</u>