

A General Representation Learning Framework with Generalization Performance Guarantees Junbiao Cui¹, Jianqing Liang¹, Qin Yue¹, Jiye Liang¹

Speaker: Junbiao Cui

1. Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, School of Computer and Information Technology, Shanxi University, Taiyuan 030006, Shanxi, China.

Correspondence to: Jiye Liang <ljy@sxu.edu.cn>

1. Motivation

2. Proposed Criterion

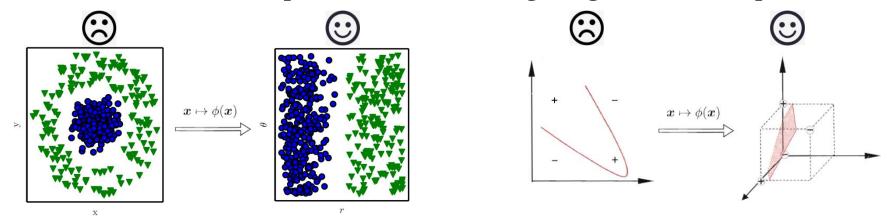
3. Application I: Kernel Selection

4. Application II: DNN Boosting

5. Conclusion and Outlook

1. Motivation

Truism Good data representation leads to good generalization performance



However General Framework of Machine Learning $h^* = \arg \min_{h \in \mathcal{H}} \sum_{i=1}^n \ell(y_i, h(x_i)) + \mathcal{R}(h), \quad h^* : \mathcal{X} \to \mathcal{Y}$ The relationship between representation learning and generalization performance is not fully considered

2. Proposed Criterion

(1) Formalize Generalization Error of Representing Learning

$$h^* = \underset{h \in \mathcal{H}}{\operatorname{arg\,min}} \sum_{i=1}^n \ell(y_i, h(x_i)) + \mathcal{R}(h)$$

General Framework of Machine Learning

The learning process is decomposed into two processes,

Learning classifier
 Learning representation

$$h^* = g^* \circ \varphi^*$$

 $g^* = \underset{g \in \mathcal{H}(\varphi^*(\mathcal{X}))}{\operatorname{arg min}} \sum_{i=1}^{n} \ell\left(y_i, g\left(\varphi^*\left(x_i\right)\right)\right) + \mathcal{R}\left(g \circ \varphi^*\right) \quad \text{Outer: Learning classifier}$ Generalization Error of s.t. $\varphi^* = \underset{\varphi \in \Psi}{\operatorname{arg\,min}} \left[\begin{array}{c} P_{err} \left(\mathcal{H} (\varphi (\mathcal{X})) \right) \right] \qquad \text{Inner:} \\ \mathcal{H} (\varphi (\mathcal{X})) \text{ is the set of hyperplues on space } \varphi (\mathcal{X}) \end{array} \right]$

The final model

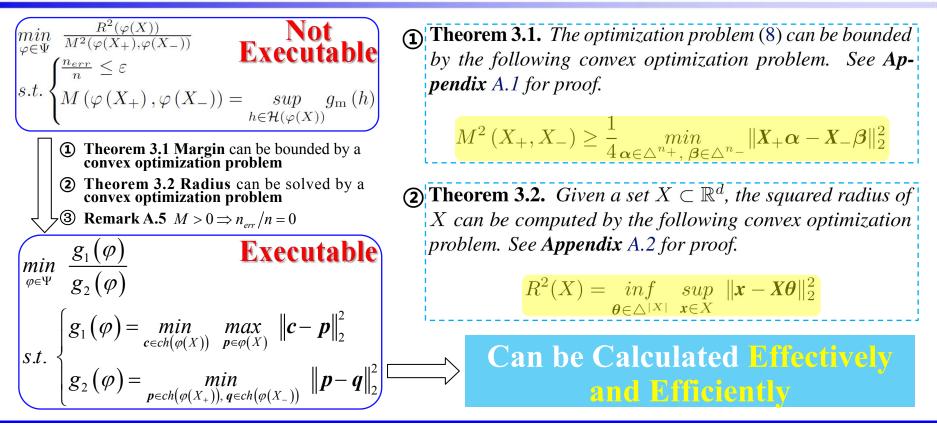
Inner: Learning representation

(2) The Upper Bound of Generalization Error

(**Theorem 2.4** (Corollary in Chapter 5.4 of (Vapnik, 1999)). **Generalization Error of Representing Learning** With probability $1 - \eta$ one can assert that the proba- $\min_{\varphi \in \Psi} |P_{err}|$ $(\varphi(\mathcal{X}))$ bility that a test sample will not be separated correctly by the M-margin hyperplane has the bound P_{err} \leq The upper bound of Generalization $\left(\frac{n_{err}}{n}+B_2\left(n,n_{err},\eta,d_{VC}\right)\right)$, where $B_2\left(n,n_{err},\eta,d_{VC}\right)=0$ (1)error is dominated by VC $rac{\mathcal{E}}{2}\left(1+\sqrt{1+rac{4n_{err}}{n\mathcal{E}}}
ight)$, $\mathcal{E}=4rac{d_{VC}\left(\lnrac{2n}{d_{VC}}+1
ight)-\lnrac{\eta}{4}}{n}$, n is the The VC dimension is dominated by the number of training samples, n_{err} is the number of training ratio between Radius and Margin samples that are not separated correctly by this M-margin hyperplane, and d_{VC} is the VC dimension in **Theorem** 2.3. Not Executable $\frac{R^2(\varphi(X))}{M^2(\varphi(X_+),\varphi(X_-))}$ $\min_{\varphi \in \Psi}$ **(2)** Theorem 2.3 (Theorem 5.1 of (Vapnik, 1999)). Let vectors $\begin{cases} \frac{n_{err}}{n} \leq \varepsilon \\ M\left(\varphi\left(X_{+}\right), \varphi\left(X_{-}\right)\right) = \sup_{h \in \mathcal{H}(\varphi(X))} g_{\mathrm{m}}\left(h\right) \end{cases}$ $x \in \mathcal{X} \subset \mathbb{R}^d$ belong to a sphere of radius R. Then the set of *M*-margin separating hyperplanes has VC dimension d_{VC} bounded by the inequality **Geometric Meaning** $d_{VC} \leq B_1\left(d, R, M\right) = min\left(\left|\frac{R^2}{M^2}\right|, d\right) + 1.$ **Numerator:** Radius of training set **Denominator:** Margin of hyperplne

[1] Vapnik, V. The Nature of Statistical Learning Theory. Springer, 2 edition, 1999.

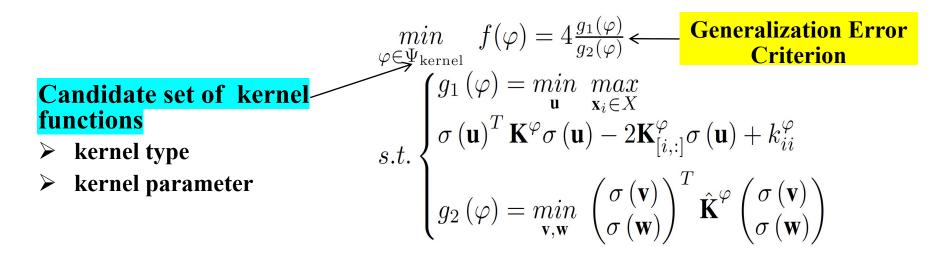
(3) Making Margin and Radius Executable



[1] Boyd, S. and Vandenberghe, L. Convex Optimization. Cambridge University Press, 2004.

3. Application I: Kernel Selection

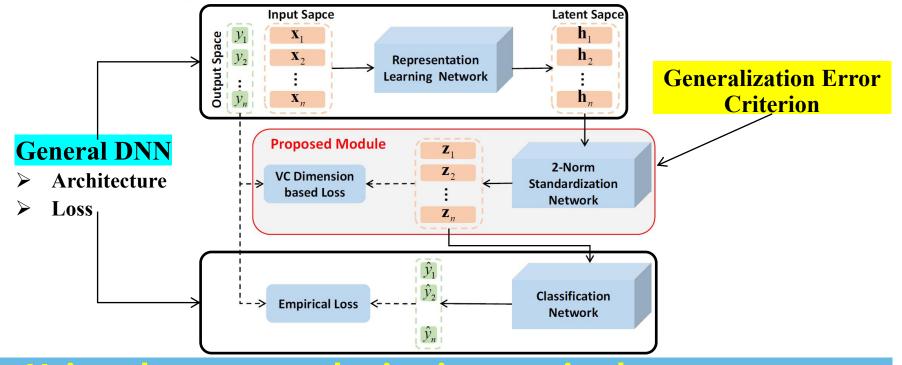
Kernel Selection Framework



Select the kernel function with the smallest generalization error

4. Application II: DNN Boosting

DNN Boosting Framework



Using the proposed criteria to train the parameters

- 1. A criterion can measure the generalization error of representation learning and can be calculated Effectively and Efficiently (Have completed)
- 2. Successful application in kernel selection (Have completed)
- **3. Successful application** in boosting DNN (Have completed)
- 4. A Powerful tool for analyzing other methods (Be going to)
- 5. Provide Guidance for designing new methods (Be going to)

School of Computer and Information Technology (School of Big Data), Shanxi University http://cs.sxu.edu.cn/index.html Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, Shanxi University, http://cicip.sxu.edu.cn/index.htm

Correspondence to: Jiye Liang <ljy@sxu.edu.cn>