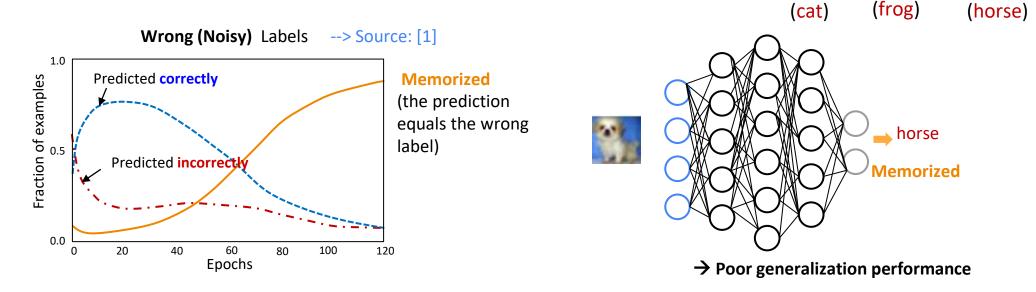


CrossSplit: Mitigating Label Noise Memorization through Data Splitting

Jihye Kim¹, Aristide Baratin², Yan Zhang², and Simon Lacoste-Julien^{2,3,4}

¹Samsung Advanced Institute of Technology (SAIT), Korea
 ²SAIT AI Lab, Montreal
 ³University of Montreal
 ⁴Canada CIFAR AI Chair



Motivation

DNNs suffer from noisy labels: Memorization

- Large learning capacities and memorization power of DNNs.
- It leads to poor generalization performance.

→ An important issue in the filed is therefore to adapt the training process to improve robustness under label noise.

ship

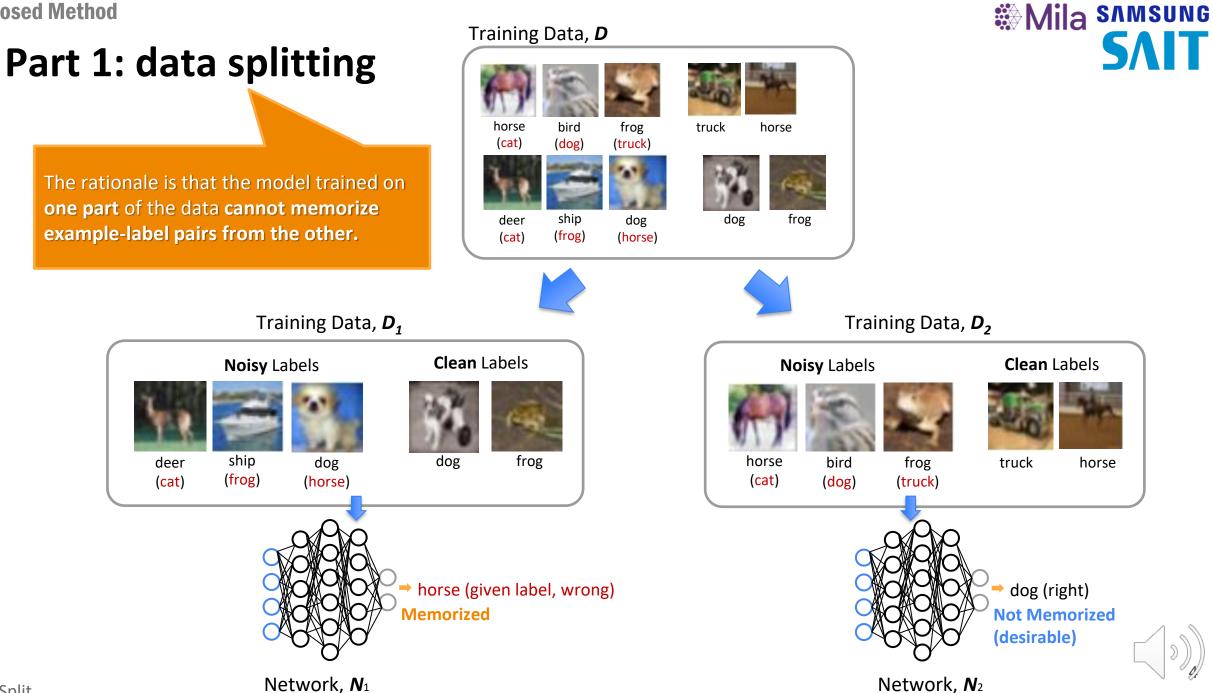
deer

dog

CrossSplit [1] Liu et al., "Early-Learning Regularization Prevents Memorization of Noisy Labels", NeurIPS 2020

Motivation

CrossSplit


Existing Approaches and Our Goal

- Existing Learning with Noisy Labels (LNL) Methods^[2,3,4]
 - 1. Label correction ^[2,3,4]
 - → Define soft target labels in terms of their own prediction, which may become unreliable as training progresses and memorization occurs.
 - 2. Sampling selection ^[2,3]
 - \rightarrow Making an accurate distinction between mislabeled and inherently difficult examples is challenging.
- Our Goal
 - To propose a novel robust training scheme that addresses some of drawbacks of existing LNL methods.
 - Data splitting: The idea is to bypass the sample selection process by using a random splitting of the data into two disjoint parts, and train a separate network on each of these splits.
 - Cross-split label correction: We propose to correct the labels by using the peer prediction.

Proposed Method

Part 2: cross-split label correction

Soft label, *s*_i

= Convex combination of y_i and the cross-split probability (softmax) vector, $\hat{y}_{peer,i} = N_2(x_i)$:

 $s_i = \beta_i \, \hat{y}_{peer,i} + (1 - \beta_i) \, y_i$ Peer Prediction
(Cross-split Probability)
Assigned Label

$$\beta_i = \gamma(\text{JSD}_{\text{norm}}(\hat{\boldsymbol{y}}_{\text{peer},i}, \boldsymbol{y}_i) - 0.5) + 0.5$$

 $(x_i, y_i) \in D_1$ x_i : an input image y_i : the one-hot vector associated to its (possibly noisy) class label. s_i : the soft label $\hat{y}_{peer,i} = N_2(x_i)$ JSD_{norm}: a normalized version of the Jensen-Shannon Divergence.

- Class-balancing coefficient normalization
 - Importance of class-wise difficulty consideration [UNICON]
 - If there is no consideration, model is biased towards selecting samples from easy classes to be clean, while rejecting clean samples from harder classes as noisy.
 - We normalize the JSD the standard JSD, within each class, it ranges from 0 to 1.

$$JSD_{norm}(\hat{\mathbf{y}}_{peer,i}, \mathbf{y}_i) := \frac{JSD(\hat{\mathbf{y}}_{peer,i}, \mathbf{y}_i) - JSD_{\mathbf{y}_i}^{\min}}{JSD_{\mathbf{y}_i}^{\max} - JSD_{\mathbf{y}_i}^{\min}}$$

Class-wise statistics



Proposed Method

Part 3: cross-split SSL training

• A network trained on one part of the data also uses the unlabeled inputs of the other part.

Cross-split Label Correction

Cross-split SSL-Training

Results

ELR (Liu et al., 2020)

UNICON (Karim et al., 2022)

DivideMix (Li et al., 2020)

CrossSplit (PRN-18)

CrossSplit (PRN-34)

-

-

-

96.1

SVIT

63.00

63.58

74.38

77.60

65.24 -

73.00 71.88

74.96 73.76

76.08 74.64

78.48 78.07

-

_

Table 2. Tiny-ImageNet

MentorNet (Jiang et al., 2018)

Co-teaching (Han et al., 2018)

Iterative-CV (Chen et al., 2019)

ELR (Liu et al., 2020)

SELC (Lu & He, 2022)

MixUp (Zhang et al., 2018)

DivideMix (Li et al., 2020)

UNICON(Karim et al., 2022)

CrossSplit (ours)

Table 1. Test accuracy (%) comparis label noise Our model achieves state							· • ·					•			•		Noise type Noise ratio	Sy 20%	ymmeti	ric 50%
label noise. Our model achieves state-of-the-art performance on almost every dataset-noise combination. The best scores are boldfaced , and the second best ones are <u>underlined</u> . The baseline results are imported from (Karim et al., 2022; Li et al., 2020; 2022). For CrossSplit,													Method	Best A	vg. Be	est Avg.				
mean and standard deviation of best accuracy are calculated over 3 repetitions of the experiments. The results are sorted according to their															9.8 19.6					
performance in the case of a 20% symmetric noise ratio.											coupling (Malach & Shalev-Shwartz, 2017) MentorNet (Jiang et al., 2018)			2.8 22.6 5.8 35.5						
CIFAR-100 CIFAR-100							Co-teaching+ (Yu et al., 2019)			1.8 41.2										
Noise type	-		Symr	netric	it it	As	ymmet	tric	-		Sym	netric			ymme	tric				1.6 51.3
Method/Noise ratio	0%	20%	50%	80%	90%	10%	30%	40%	0%	20%	50%	80%	90%	10%	30%	40%	NCT (Sarfraz et al., 2021) UNICON (Karim et al., 2022)	58.0 57 59.2 <u>58</u>		7.8 47.4 2.7 52.4
CE	95.4	86.8	79.4	62.9	42.7	88.8	81.7	76.1	77.3	62.0	46.7	19.9	10.1	68.1	53.3	44.5	CrossSplit (ours)		3.8 <u>52</u>	<u>2.4 52.0</u>
Bootstrapping (Reed et al., 2015)	-	86.8	79.8	63.3	42.9	-	-	-	-	62.1	46.6	19.9	10.2	-	-	-				
JPL (Kim et al., 2021)	-	93.5	90.2	35.7	23.4	94.2	92.5	90.7	-	70.9	67.7	17.8	12.8	72.0	68.1	59.5				
M-Correction (Arazo et al., 2019)	-	94.0	92.0	86.8	69.1	89.6	92.2	91.2	-	73.9	66.1	48.2	24.3	67.1	58.6	47.4				
MOIT (Ortego et al., 2021)	-	94.1	91.1	75.8	70.1	94.2	94.1	93.2	-	75.9	70.1	51.4	24.5	77.4	75.1	74.0	Table 3. Mini-WebVisi	ion		
SELC (Lu & He, 2022)	-	95.0	-	78.6	-	-	-	92.9	-	76.4	-	37.2	-	-	-	73.6	Method		Best	Last
Sel-CL (Li et al., 2022)	-	95.5	93.9	89.2	81.9	95.6	95.2	93.4	-	76.5	72.4	59.6	48.8	78.7	76.4	74.2	Decoupling (Malach & Shaloy Shyuertz	2017) 6	2.54	
MixUp (Zhang et al., 2018)	95.8	95.6	87.1	71.6	52.2	93.3	83.3	77.7	78.9	67.8	57.3	30.8	14.6	72.4	57.6	48.1	Decoupling (Malach & Shalev-Shwartz, 2 MentorNet (Jiang et al., 2018)	~	2.54	-

77.3

-

97.0 96.9 96.3 95.4 91.3 96.9 96.4 96.0 81.7 79.9 75.7 64.6 52.4 80.7 78.5 76.8

 $\pm 0.16 \ \pm 0.05 \ \pm 0.05 \ \pm 0.64 \ \pm 0.79 \ \pm 0.04 \ \pm 0.16 \ \pm 0.12 \ \pm 0.25 \ \pm 0.19 \ \pm 0.18 \ \pm 1.43 \ \pm 1.78 \ \pm 0.05 \ \pm 0.19 \ \pm 0.66 \ \pm 0.66 \ \pm 0.19 \ \pm$

97.3 97.1 96.5 95.2 85.3 **97.2 96.6 96.1 83.0 81.4** 77.2 **67.0 52.6 82.6 80.5 79.1**

 $\pm 0.16 \ \pm 0.16 \ \pm 0.24 \ \pm 0.59 \ \pm 3.61 \ \pm 0.09 \ \pm 0.11 \ \pm 0.08 \ \pm 0.15 \ \pm 0.38 \ \pm 0.25 \ \pm 0.49 \ \pm 3.43 \ \pm 0.15 \ \pm 0.27 \ \pm 0.40 \ \pm 0.40 \ \pm 0.15 \ \pm 0.27 \ \pm 0.40 \ \pm 0.15 \ \pm 0.27 \ \pm 0.40 \ \pm 0.15 \ \pm 0.27 \ \pm 0.40 \ \pm 0.15 \ \pm 0.27 \ \pm 0.40 \ \pm 0.15 \ \pm 0.27 \ \pm 0.40 \ \pm 0.15 \ \pm 0.27 \ \pm 0.40 \ \pm 0.15 \ \pm 0.27 \ \pm 0.40 \ \pm 0.15 \ \pm 0.27 \ \pm 0.40 \ \pm 0.15 \ \pm 0.27 \ \pm 0.40 \ \pm 0.15 \ \pm 0.27 \ \pm 0.40 \ \pm 0.15 \ \pm 0.27 \ \pm 0.40 \ \pm 0.15 \ \pm 0.27 \ \pm 0.40 \ \pm 0.15 \ \pm 0.27 \ \pm 0.40 \ \pm 0.15 \ \pm 0.27 \ \pm 0.40 \ \pm 0.15 \ \pm 0.27 \ \pm 0.40 \ \pm 0.40 \ \pm 0.15 \ \pm 0.27 \ \pm 0.40 \ \pm$

77.6 73.6 60.8 33.4 77.3 74.6 73.2

78.9 77.6 63.9 44.8 78.2 75.6 74.8

74.6 60.2 31.5 71.6 69.5 55.1

95.8 94.8 93.3 78.7 95.4 94.7 93.0

96.0 95.6 93.9 90.8 95.3 94.8 94.1

94.6 93.2 76.0 93.8 92.5 91.7

Mila SAMSUNG

Memorization behavior

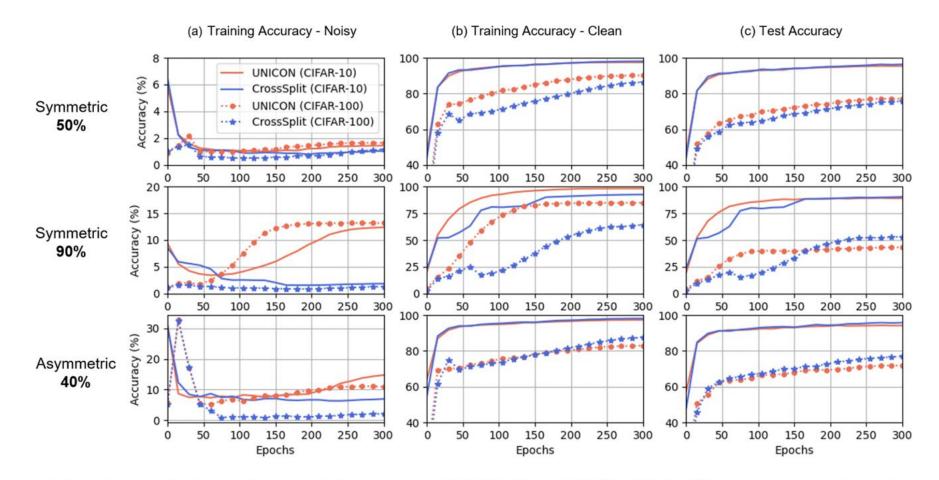


Figure 3. Memorization of clean and noisy training samples of CIFAR-10 and CIFAR-100 for different types of noise and noise ratio. Compared to UNICON [12], *CrossSplit* induces less memorization of the noisy labels. It is interesting to note that in the case of very a high noise ratio (90%), *CrossSplit* has a lower training accuracy also on clean data, yet yields a higher test performance.

Results

Ablation study

Noise type		Symr	netric		Asymmetric				
Noise ratio	50	0%	90	1%	10	%	40%		
Method	Best Last		Best Last		Best	Last	Best	Last	
CrossSplit	$96.34{\scriptstyle \pm 0.05}$	$96.23{\scriptstyle \pm 0.07}$	91.25±0.79	$91.02{\scriptstyle \pm 0.77}$	$96.85{\scriptstyle \pm 0.04}$	$96.74{\scriptstyle \pm 0.07}$	$96.01{\scriptstyle \pm 0.12}$	$95.88{\scriptstyle \pm 0.13}$	
CrossSplit w/o data splitting	$96.10{\scriptstyle \pm 0.04}$	$95.96{\scriptstyle \pm 0.00}$	$90.30{\scriptstyle \pm 0.13}$	$89.93{\scriptstyle \pm 0.24}$	$96.76{\scriptstyle \pm 0.05}$	$96.63{\scriptstyle \pm 0.06}$	92.16±0.09	$86.24{\scriptstyle \pm 0.37}$	
CrossSplit w/o class-balancing normalization	96.73±0.13	96.61 ±0.07	$75.54{\scriptstyle\pm2.82}$	$74.88{\scriptstyle \pm 2.50}$	$97.33{\scriptstyle \pm 0.02}$	$97.20{\scriptstyle \pm 0.02}$	96.22±0.07	$96.04{\scriptstyle \pm 0.12}$	
CrossSplit w/o cross-split label correction	$96.12{\scriptstyle \pm 0.05}$	$95.99{\scriptstyle \pm 0.03}$	$90.83{\scriptstyle \pm 0.25}$	$90.08{\scriptstyle \pm 0.40}$	$97.33{\scriptstyle \pm 0.08}$	$97.15{\scriptstyle \pm 0.09}$	$96.12{\scriptstyle \pm 0.14}$	$95.95{\scriptstyle \pm 0.10}$	

Table 6. Ablation study on CIFAR-10: Test accuracy (%) of different setting on CIFAR-10 with varying noise rates (50% - 90% for Sym. and 10% - 40% for Asym.). Mean and standard deviation of best and average of last 10 epochs are calculated over 3 repetitions of the experiments. The best results are highlighted in **bold** and scores that differ from them by more than 5% are marked in red.

Noise type		Symr	netric		Asymmetric					
Noise ratio	50	0%	90	%	10	1%	40%			
Method	Best Last		Best Last		Best	Last	Best	Last		
CrossSplit	$75.72{\scriptstyle \pm 0.18}$	$75.50{\scriptstyle \pm 0.18}$	$\textbf{52.40}_{\pm 1.78}$	$\textbf{52.05}_{\pm 1.94}$	$80.71{\scriptstyle \pm 0.05}$	$80.50{\scriptstyle \pm 0.06}$	76.78±0.66	76.56±0.55		
CrossSplit w/o data splitting	$73.63{\scriptstyle \pm 0.18}$	$73.36{\scriptstyle \pm 0.14}$	$14.19{\scriptstyle \pm 1.30}$	$\underline{13.28}_{\pm 2.21}$	$78.97{\scriptstyle\pm0.07}$	$78.77{\scriptstyle\pm0.43}$	$72.12{\scriptstyle \pm 0.43}$	$71.83{\scriptstyle \pm 0.42}$		
CrossSplit w/o class-balancing normalization	77.67±0.03	$\textbf{77.17}_{\pm 0.17}$	$33.37{\scriptstyle\pm0.52}$	$18.53{\scriptstyle \pm 0.19}$	$82.86{\scriptstyle \pm 0.14}$	$\textbf{82.57}{\scriptstyle \pm 0.18}$	$71.59{\scriptstyle \pm 0.28}$	$60.35{\scriptstyle \pm 0.37}$		
CrossSplit w/o cross-split label correction	70.20±0.16	$65.74{\scriptstyle \pm 0.10}$	$31.77{\scriptstyle\pm0.32}$	$15.93{\scriptstyle \pm 0.21}$	$82.38{\scriptstyle \pm 0.16}$	$82.10{\scriptstyle \pm 0.23}$	69.61±0.65	59.67±0.11		

Table 7. Ablation study on CIFAR-100: Test accuracy (%) of different settings on CIFAR-100 with varying noise rates (50% - 90% for Sym. and 10% - 40% for Asym.). Mean and standard deviation of best and average of last 10 epochs are calculated over 3 repetitions of the experiments. The best results are highlighted in **bold** and scores that differ from them by more than 5% are marked in red.

Thanks!

CrossSplit: Mitigating Label Noise Memorization through Data Splitting

Please check our paper for more details.

Wed 26 11 a.m. HST – 12: 30 p.m. HST (Exhibit Hall 1 #210)

CrossSplit