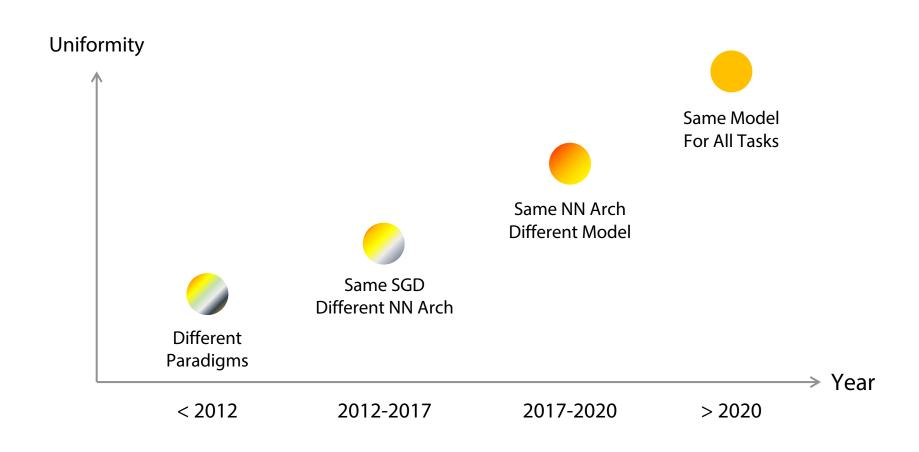


VIMA

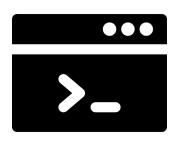
Robot Manipulation with Multimodal Prompts

Yunfan Jiang, Agrim Gupta[†], Zichen "Charles" Zhang[†], Guanzhi Wang[†], Yongqiang Dou, Yanjun Chen, Li Fei-Fei, Anima Anandkumar, Yuke Zhu[‡], Linxi "Jim" Fan[‡]

History of Al is a history of unification

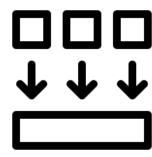


What's so good about it?



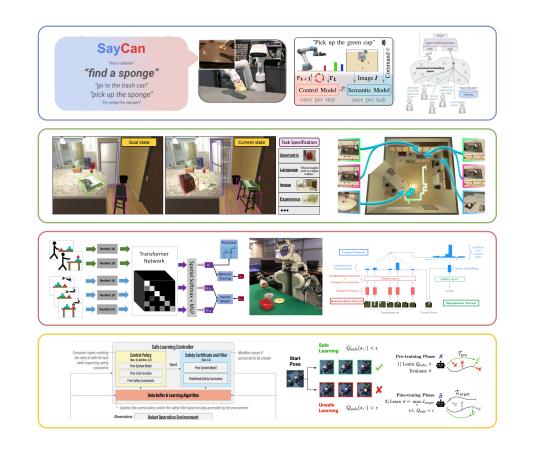
A single interface for all scenarios

A single model to learn them all



A better way to **generalize**

Fragmented task specifications and tackling methods



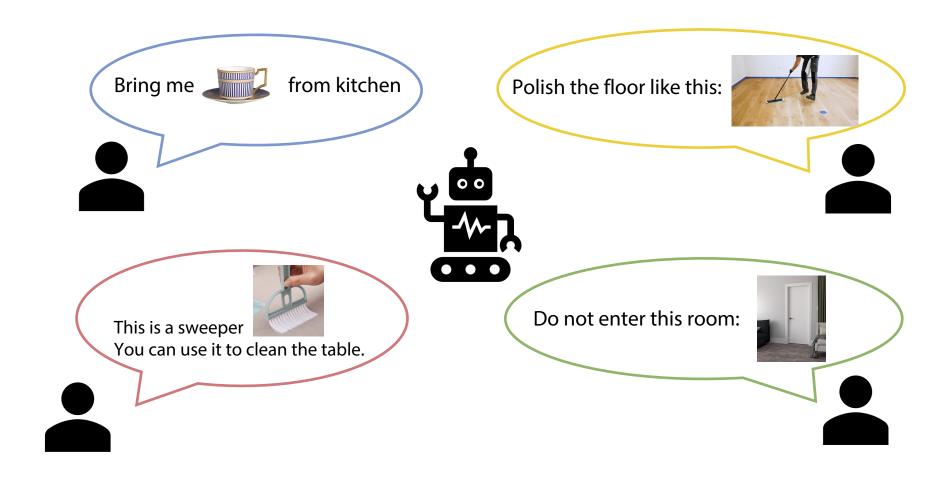
Instruction Following

Visual Goal: Rearrangement

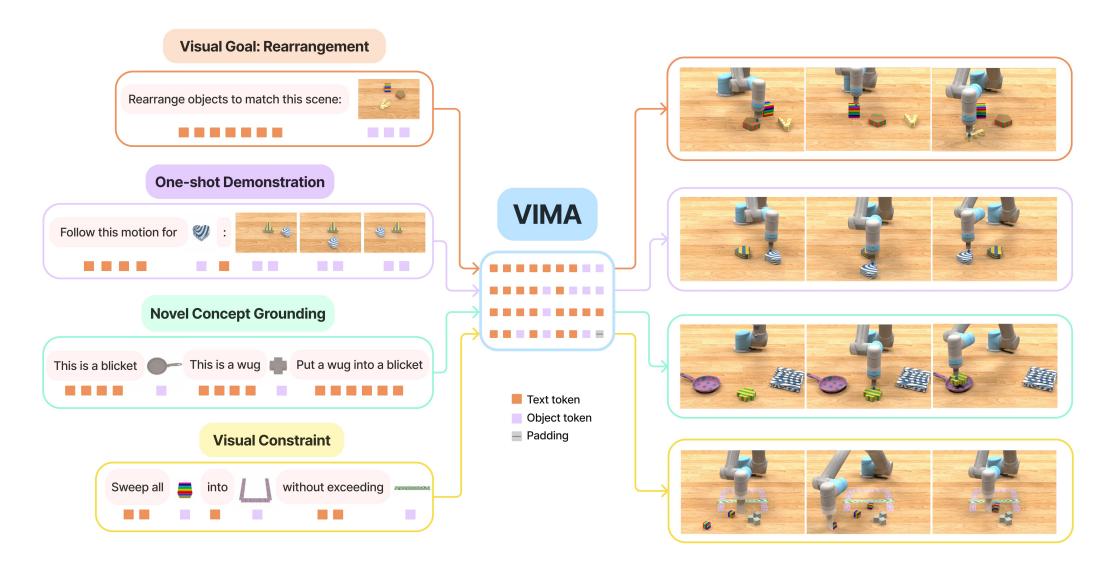
One-shot Video Demonstration

Constraint Satisfaction

What do we want for robot learning?



VIMA: Robot Manipulation with Multimodal Prompts



Various task specifications as multimodal prompts

Visual Goal Reaching:

Rearrange objects to match this scene:

Novel Concept Grounding:

This is a blicket

This is a wug

Put a wug into a blicket

One-shot Video Imitation:

Follow this motion for

Wisual Constraint Satisfaction:

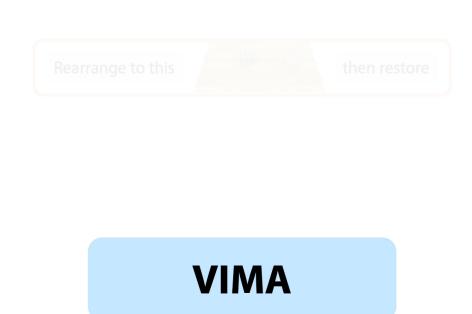
Sweep all

into

without exceeding

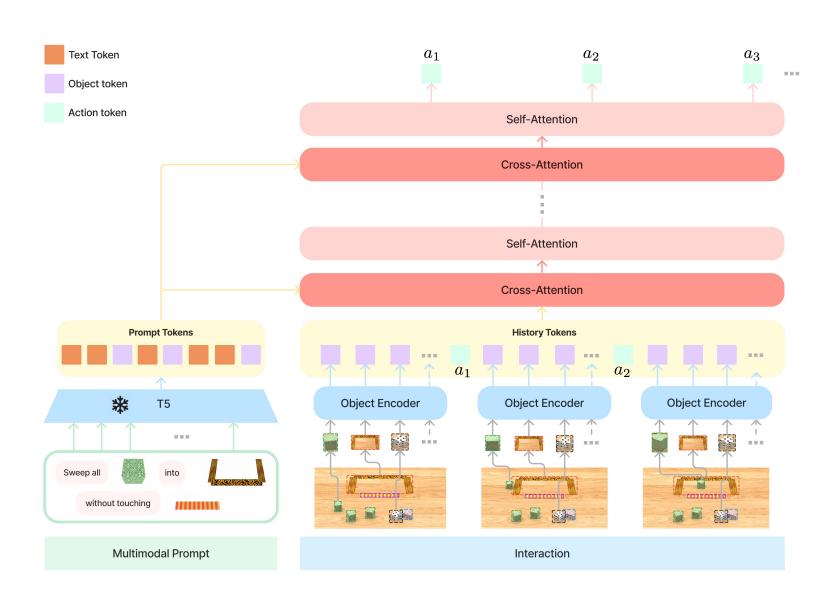
A novel generalist agent for robot manipulation

- Transformer encoder-decoder style
- Encode multimodal prompt with a pre-trained LM
- Decode robot arm action one step at a time



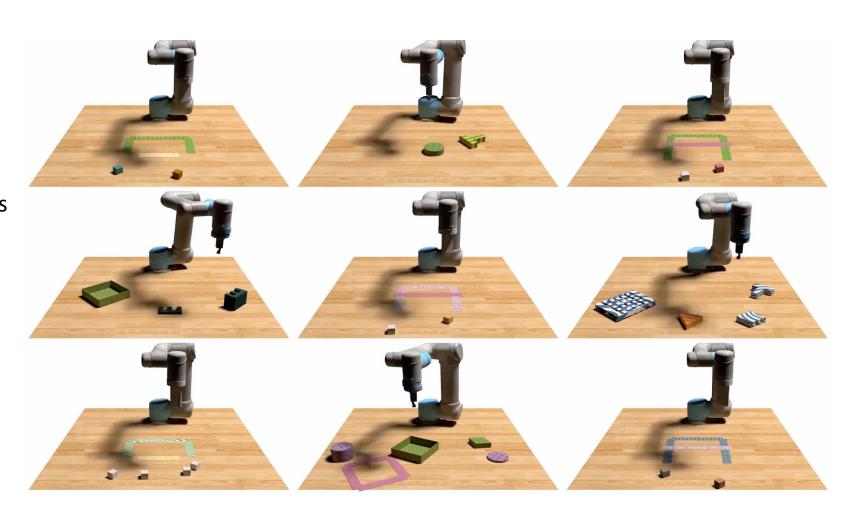
A novel generalist agent for robot manipulation

- Cross-attention to condition history on prompt
- Alternate cross-attention and causal self-attention to decode actions
- Object as tokens



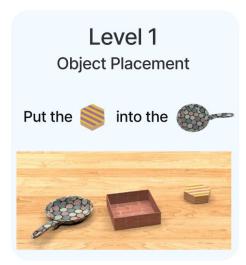
A large-scale benchmark with multimodal prompts

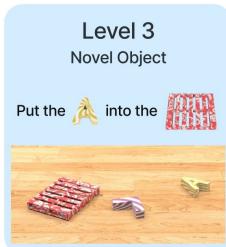
- 17 task templates with multimodal prompts
- All templates are paired with thousands of procedurally generated multimodal prompts
- Scripted oracles to generate expert demonstrations



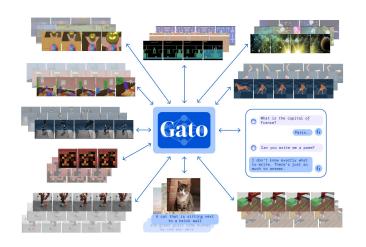
4 levels of generalization

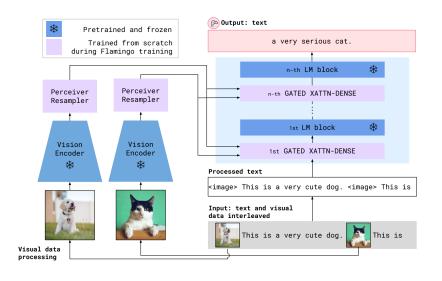
Stronger Generalization

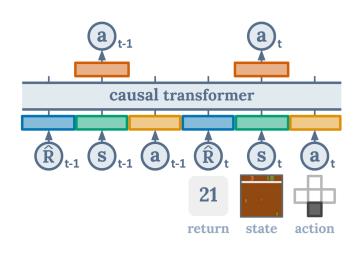




Baselines





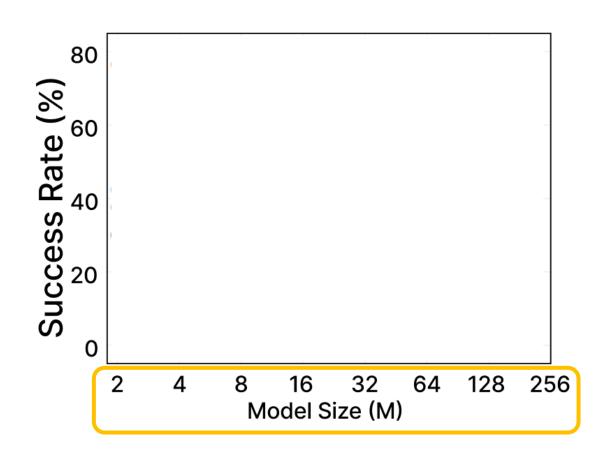


VIMA-Gato

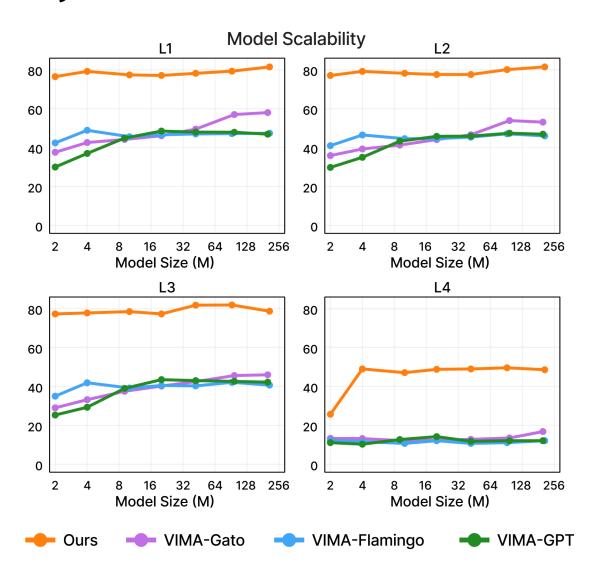
VIMA-Flamingo

VIMA-GPT

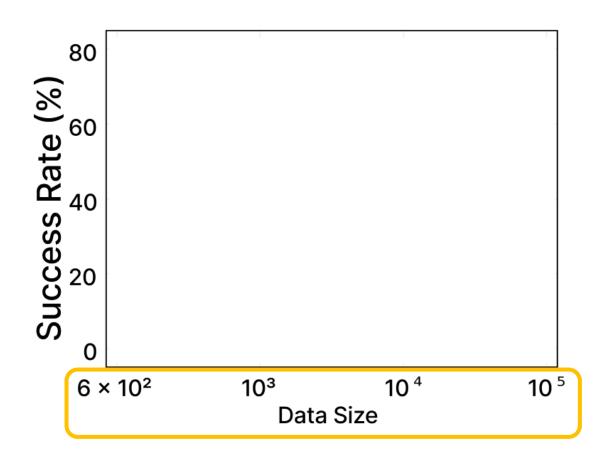
Model scalability



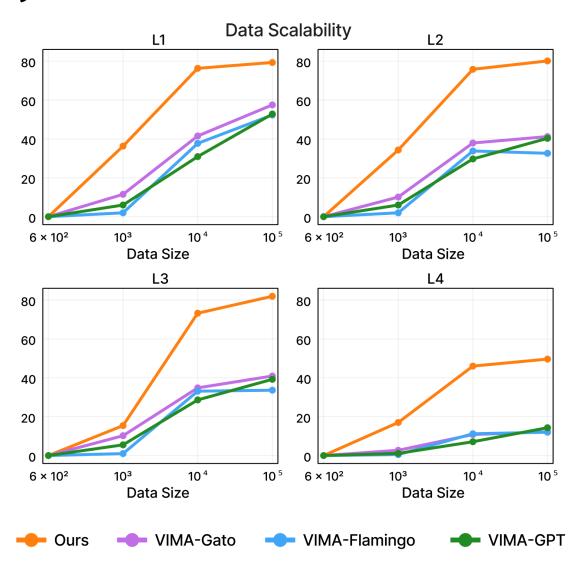
Model scalability



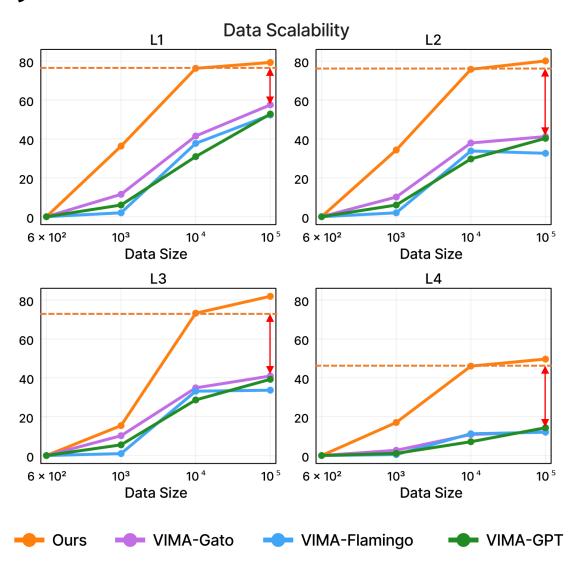
Data scalability



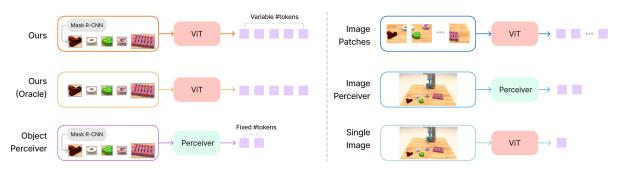
Data scalability



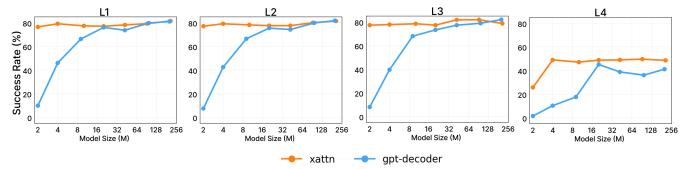
Data scalability



Why our recipe is so effective?



Visual Tokenizers



Prompt Conditioning

Table 13: Performances of our method with differently sized pre-trained T5 prompt encoder. We fix the parameter count of the decision-making part to be 200M.

	t5-small (30M)	t5-base (111M)	t5-large (368M)
L1	78.8	81.5	80.8
L2	79.0	81.5	81.0
L3	80.3	78.7	81.0
L4	49.1	48.6	49.3

Prompt Encoding

Table 14: Evaluation results on tasks with increased amounts of distractors. We fix the parameter count of the decision-making part to be 200M.

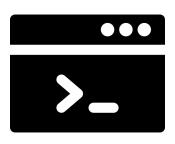
	L1	L2	L3	L4
Original	81.5	81.5	78.7	48.6
More Distractors	78.5	78.6	72.9	47.8
Relevant Performance Decrease (%)	3.6	3.5	7.3	1.6

Table 15: Evaluation results with incomplete and corrupted prompts. We fix the parameter count of the decision-making part to be 200M.

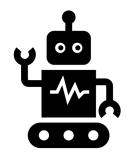
	L1	L2	L3	L4
Original	81.5	81.5	78.7	48.6
Incomplete Prompts	80.8	81.1	77.0	48.0
Corrupted Prompts	78.2	78.1	73.8	45.3
Relevant Performance Decrease w/ Incomplete Prompts (%)		0.4	2.1	1.2
Relevant Performance Decrease w/ Corrupted Prompts (%)	4.2	4.3	6.6	7.2

Policy Robustness

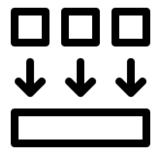
Take-home messages



Multimodal Prompting for Unification



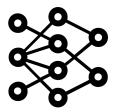
VIMA: Cross-Attention + Object Tokens



Good Generalization & Sample-Efficient

vimalabs.github.io

Source Code



Pretrained Models

Simulation Suite

Training Dataset

Thank you!