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- We show how disentangled representation + sparsity-regularized predictors can
improve generalization when the downstream task is "sparse”

- We introduce a novel identifiability result, showing how one can leverage multiple
sparse tasks to learn a shared disentangled representation, by regularizing the
task-specific predictors to be maximally sparse across tasks

« We propose a tractable bilevel optimization problem to learn this shared repre-
sentation while regularizing task-specific predictors to be sparse

« We draw connections with the meta-learning algorithm MetaOptNet [3]

Disentanglement + Sparse Tasks = Generalization

. Sparse tasks: Input-label pairs (x,y) are sampled from an unknown process:
z ~ p(x)
- Assumption: The learned representation is linearly equivalent to the ground-
truth, i.e. there exists an invertible matrix L such that f,(x) = L fo(x) [4]
. Optimal predictor for learned representation is w' := w' L' since
w' fa(x) =w' L Lfg(x) =w' fo(x)

- Definition: A learned representation f,(x) is disentangled w.r.t. a ground-truth
representation fg(x) when f4(x) = PD fo(x), where P is a permutation and D
Is an invertible diagonal matrix

y=w' fy(x) wherew is sparse

- Advantage for disentangled representations:  Awin for disentanglement!!!
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Experiment with frozen representations: (¢/m = ratio of useful features)

—@— Entangled-Lasso —#— Entangled-Ridge
Disentangled-Lasso Disentangled-Ridge

10 ¢/m = 5% {/m = 20% ¢/m = 80%
. oa /A o : —W
[ 0.0 (2@ |
0.01@ —
| | | | | | | |
50 100 150 50 100 150 50 100 150
# samples # samples # samples

Disentanglement via Sparse Multi-Task Learning

Multi-Task Learning Setting:
. Data generating process: For each task ¢, (x,y) is distributed as

p(a,y | W) =p(x | W )p(y;n = WY fy(z))
where p(y;n) is distribution parameterized by n. E.g. Gaussian withn = (u, 0?)

. Support of task t: S .= {j € [m HW # 0}

- Task generating process:

WO S Py = 37 p(S) Py s where

p(.S) = distribution over task support with support S
Py s = conditional distribution of W given its support is 5

Theorem: Let @ be a minimizer of
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then, under Assumptions 1to 5, f, is disentangled w.r.t. fy
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Relaxation of the Bilevel Problem

min ——Z > logp(y: W ()
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- We need to "backpropagate through the solution of the inner problem”

« We can compute the gradient of the (outer) objective w.r.t. 0 via backpropaga-
tion & implicit differentiation

« This can be done even if the inner objective is non-smooth [2]

Assumptions for Identifiability Result

« Assumption 1 KL(p(y;m) || p(y;n)) = 0 = n = n, where KL denotes the
Kullback-Leibler divergence

. Assumption 2 There exists . .... ™ € X such that the matrix F =

(fo(x'V)), ..., fo(x!™)] is invertible

. Assumption 3 There exists W .
that the rows VV,LEU, el szgn ™) are Ilnearly Independent

- Assumption 4 For all S € S and alla € RIN\{0}, Py s[W.sa = 0] = 0

L, W W and indices iy, ..., i, € [k] such

HDW|S “W1,2
. Red distribution: Normal with full rank covariance \/
Blue distribution: Normal with low rank covariance x
/ Wl 1 Distribution with finite support x
S = {1 2}
» Assumption 5 For all j € [m|, Ugcg|jes S = Im| \ {j}
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Set of “task supports” Verification that assumption holds

Semi-Synthetic Experiments on 3D Shapes

« We control the distribution over latents (various correlation & noise levels)

. Ground-truth labels are given by y = w9 fy(x) + € where w'") are sampled from
a spike and slab distribution to induce sparsity

« Inner-Ridge + ICA w/o regularization = [1] (assumes independent features)

— e - |nner-Lasso Inner-Ridge —e = |nner-Ridge + ICA
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Multiple correlation values
10 T N3 - o b

S 0
O & \
= Il l \\
0.5 - -
| _T | |
0.0 0.01 0.03 0.1 03 1.0 O 0 0.01 0.03 0.1 0.6 0.8 1.0
A/ Amax )\/)\max Correlation
Noise scale = 0 Noise scale = 1 Multiple noise values
1.0 i Seindeiaie Bl
~R YN T —
) -
O
20.5_|[J]-‘]I-‘]IT‘ _IEJI:]I"V]IT[ )
| | | | |
0.0 0.01 0.03 0.1 . 0.0 0.01 0.03 0.1 . 0 0.25 0.5 0.75 1
A/ Amax A/ Amax Noise scale

- Latent representation responses to changing a single factor of variation
(correlation 0.9 between latents, MCC=0.96):
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