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Contributions

• We show how disentangled representation + sparsity-regularized predictors can
improve generalization when the downstream task is "sparse"

• We introduce a novel identifiability result, showing how one can leveragemultiple
sparse tasks to learn a shared disentangled representation, by regularizing the
task-specific predictors to be maximally sparse across tasks

• We propose a tractable bilevel optimization problem to learn this shared repre-
sentation while regularizing task-specific predictors to be sparse

• We draw connections with themeta-learning algorithm MetaOptNet [3]

Disentanglement + Sparse Tasks = Generalization

• Sparse tasks: Input-label pairs (x, y) are sampled from an unknown process:
x ∼ p(x) y = w⊤fθ(x) where w is sparse

• Assumption: The learned representation is linearly equivalent to the ground-
truth, i.e. there exists an invertible matrix L such that fθ̂(x) = Lfθ(x) [4]

• Optimal predictor for learned representation is ŵ⊤ := w⊤L−1 since
ŵ⊤fθ̂(x) = w⊤L−1Lfθ(x) = w⊤fθ(x)

• Definition: A learned representation fθ̂(x) is disentangled w.r.t. a ground-truth
representation fθ(x) when fθ̂(x) = PDfθ(x), where P is a permutation and D
is an invertible diagonal matrix

• Advantage for disentangled representations:
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variance decreases + bias

A win for disentanglement!!!

• Experiment with frozen representations: (ℓ/m = ratio of useful features)
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Disentanglement via Sparse Multi-Task Learning

Multi-Task Learning Setting:
• Data generating process: For each task t, (x,y) is distributed as

p(x, y | W (t)) = p(x | W (t))p(y; η = W (t)fθ(x))

where p(y; η) is distribution parameterized by η. E.g. Gaussian with η = (µ, σ2)

• Support of task t: S(t) := {j ∈ [m] | W (t)
:,j ̸= 0}

• Task generating process:

W (t) i.i.d.∼ PW =
∑

S p(S)PW |S where
p(S) = distribution over task support with support S

PW |S = conditional distribution ofW given its support is S
Theorem: Let θ̂ be a minimizer of

min
θ̂

EPW
Ep(x,y|W ) − log p(y; Ŵ (W )fθ̂(x))

s.t. Ŵ (W ) ∈ arg min
W̃ s.t.

∥W̃ ∥2,0≤∥W ∥2,0

Ep(x,y|W ) − log p(y; W̃fθ̂(x))

Outer
Problem

Inner
Problem Sparsity regularization

∥A∥2,0 =
∑m

j=1 1(∥A:j∥2 ̸= 0)

Task-specific estimator

then, under Assumptions 1 to 5, fθ̂ is disentangled w.r.t. fθ
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Relaxation of the Bilevel Problem

min
θ̂

− 1

Tn

T∑
t=1

∑
(x,y)∈Dt

log p(y; Ŵ (t)fθ̂(x))

s.t. Ŵ (t) ∈ arg min
W̃

−1

n

∑
(x,y)∈Dt

log p(y; W̃fθ̂(x)) + λt∥W̃ ∥2,1
∥A∥2,1 =

∑m
j=1 ∥A:j∥2

• We need to "backpropagate through the solution of the inner problem"
• We can compute the gradient of the (outer) objective w.r.t. θ̂ via backpropaga-
tion & implicit differentiation

• This can be done even if the inner objective is non-smooth [2]

Assumptions for Identifiability Result

•Assumption 1 KL(p(y;η) || p(y; η̃)) = 0 =⇒ η = η̃, where KL denotes the
Kullback-Leibler divergence

•Assumption 2 There exists x(1), . . . ,x(m) ∈ X such that the matrix F :=
[fθ(x

(1)), . . . , fθ(x
(m))] is invertible

•Assumption 3 There existsW (1), . . . ,W (m) ∈ W and indices i1, . . . , im ∈ [k] such
that the rowsW (1)

i1,:
, . . . ,W

(m)
im,:

are linearly independent
•Assumption 4 For all S ∈ S and all a ∈ R|S|\{0}, PW |S[W:Sa = 0] = 0

Red distribution: Normal with full rank covariance

Blue distribution: Normal with low rank covariance

Orange distribution: Distribution with finite support

•Assumption 5 For all j ∈ [m],
∪

S∈S|j ̸∈S S = [m] \ {j}

Set of “task supports” Verification that assumption holds 

Semi-Synthetic Experiments on 3D Shapes

• We control the distribution over latents (various correlation & noise levels)
• Ground-truth labels are given by y = w(t)fθ(x) + ϵ where w(t) are sampled from
a spike and slab distribution to induce sparsity

• Inner-Ridge + ICA w/o regularization = [1] (assumes independent features)
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• Latent representation responses to changing a single factor of variation
(correlation 0.9 between latents, MCC=0.96):
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