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Abstract

◦ Deep Ensemble (DE) is a simple yet powerful way to improve the performance of deep neural networks.

◦ Using mode connectivity, one can efficiently collect ensemble parameters in low-loss subspaces.

◦ However, for inference, one should still execute multiple forward passes.

◦ We propose a novel framework “bridge network” to reduce inference costs using mode connectivity
properties in function space.
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Deep Ensemble

Deep Ensemble [Lakshminarayanan et al., 2017] is a simple algorithm that ensembles multiple neural
networks where each network is trained with different random seeds.

Benefits of DE:

◦ Simple to implement.

◦ Improves both accuracy and uncertainty calibration.

◦ Easy to parallelize.

Drawbacks of DE:

◦ Requires multiple training runs.

◦ Requires multiple forward passes for inference.

→ Computational cost increases with the number of ensembles.
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Mode Connectivity

Figure 1: Two modes in the loss surface and the connecting subspace. Left: Bezier curve, Right: Polygonal chain.
(Figure from Garipov et al. [2018])

Garipov et al. [2018] and Draxler et al. [2018] showed that modes (local optima) in the loss surface of
a deep neural network are connected by relatively simple low-dimensional subspaces where the loss in
the subspace retains low values.
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Low-loss Subspaces

We focus on quadratic Bezier curves [Garipov et al., 2018]. Let θi and θj be two parameters of a neural
network. The quadratic Bezier curve between them is defined as{

(1 − r)2θi + 2r(1 − r)θ(be)
i,j + r 2θj | r ∈ [0, 1]

}
, (1)

where θ
(be)
i,j is a pin-point parameter characterizing the curve. A low-loss subspace connecting (θi ,θj) is

found w.r.t. θ(be)
i,j by minimizing ∫ 1

0
L
(
θ
(be)
i,j (r)

)
dr , (2)

where θ
(be)
i,j (r) denotes the point at the position r of the curve,

θ
(be)
i,j (r) = (1 − r)2θi + 2r(1 − r)θ(be)

i,j + r 2θj , (3)

and L : Θ → R is the loss function evaluating parameters.

4



Ensemble with Bezier curves

Let {θ1, . . . ,θm} be a set of parameters independently trained as a deep ensemble. Then, for each
pair (θi ,θj), we can construct a low-loss Bezier curve. For instance, choosing r = 0.5, we can collect
θ
(be)
i,j (0.5) for all (i , j) pairs, and construct an ensembled predictor as

1
m +

(m
2

)( m∑
i=1

fθi (x) +
∑
i<j

f
θ
(be)
i,j (0.5)

(x)
)
. (4)

While this strategy provide an effective way to increase the number of ensemble members, for inference,
an additional O(m2) number of forward passes are required.
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Goal

Reduce the inference cost using mode connectivity properties in function space.

How: Directly approximate the outputs evaluated at the subspace with a small auxiliary network, which
is called “bridge network”.

Assumption: if two modes are connected by a simple subspace, we can predict the outputs correspond-
ing to the parameters on the subspace using only the outputs computed from the modes.

The bridge network lets us travel between modes in the function space.
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Method Overview

Figure 2: Ensembles with a Bezier curve (left), a type I bridge network (center), and a type II bridge network (right).
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Bridge Networks

Assumption (revisited): if two modes are connected by a simple low-loss subspace (Bezier curve), then
we can predict the outputs corresponding to the parameters on the subspace using only the information
obtained from the modes.

If such mapping exists, we may learn them via a lightweight neural network.

◦ Features: z i := f (ft)ϕi
(x)

◦ Output: v i := fθi (x) = f (cls)
ψi

(z i)

◦ Features (Bezier curve): z i,j(r) := f
ϕ

(be)
i,j (r)

(x)

◦ Output (Bezier curve): v i,j(r) := f
θ
(be)
i,j (r)

(x) = f (cls)

ψ
(be)
i,j (r)

(z i,j(r))

We reuse features z i to predict v i,j(r) with a lightweight neural network, which lets us directly move from
v i to v i,j(r) in the function space.

A bridge network is usually constructed with a Convolutional Neural Network (CNN) whose inference cost
is much lower than that of fθi .
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Type I Bridge Networks

A type I bridge network h(r)
i,j takes a feature z i from only one mode, and predicts

v i,j(r) ≈ ṽ i,j(r) = h(r)
i,j (z i). (5)

An ensembled prediction with the type I bridge network is then constructed as

1
2

(
v i + h(r)

i,j (z i)

)
, (6)

whose inference cost is not much higher than that of v i . One can also connect θi with multiple modes
{θj1 , . . . ,θjk }, learn bridge networks between (i , j1), . . . , (i , jk ), and construct an ensemble

1
1 + k

(
v i +

k∑
j=1

h(r)
i,jk

(z i)

)
. (7)

Still, since the costs for h(r)
i,jk

s are far lower than v i , the inference cost does not significantly increase.
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Type II Bridge Networks

A type II bridge network H(r)
i,j between (θi ,θj) takes two features (z i , z j), and predicts

v i,j(r) ≈ ṽ i,j(r) = H(r)
i,j (z i , z j). (8)

An ensembled prediction with the type II bridge network is then constructed as

1
3

(
v i + v j + H(r)

i,j (z i , z j)

)
, (9)

where we construct an ensemble of three models with effectively two forward passes (for v i and v j ).
Similar to the type I bridge networks, we may construct multiple bridges between a single curves and use
them together for an ensemble

1
k +

(k
2

)( k∑
i=1

v i +
∑

i<j≤k

H(r)
i,j (z i , z j)

)
. (10)
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Figure 3: Bar plots in the third column show the class probability outputs of the bridge network (orange) and the base
model with the Bezier parameters (blue) for given images displayed in the first column. We also depict the predicted
outputs from the base model with θ1 and θ2 in the second and fourth columns, respectively.
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Classification Performance (Type I)

Table 1: Performance improvement of the ensemble by adding type I bridges to the single base ResNet model on Tiny
ImageNet and ImageNet datasets. Bridgesm and Bridgemd denote the small and the medium versions of the bridge
network based on their FLOPs.

Tiny ImageNet

Model FLOPs (↓) #Params (↓) ACC (↑) NLL (↓) ECE (↓) DEE (↑)

ResNet (DE-1) × 1.000 × 1.000 62.66 ± 0.23 1.683 ± 0.009 0.050 ± 0.004 1.000

+ 1 Bridgesm × 1.050 × 1.057 64.58 ± 0.17 1.478 ± 0.006 0.025 ± 0.002 2.280 ± 0.086

+ 2 Bridgesm × 1.099 × 1.114 65.37 ± 0.13 1.421 ± 0.004 0.018 ± 0.002 3.087 ± 0.118

+ 3 Bridgesm × 1.149 × 1.171 65.82 ± 0.10 1.395 ± 0.003 0.015 ± 0.001 3.680 ± 0.133

+ 1 Bridgemd × 1.180 × 1.206 65.13 ± 0.12 1.446 ± 0.002 0.034 ± 0.002 2.709 ± 0.049

+ 2 Bridgemd × 1.359 × 1.412 66.29 ± 0.06 1.388 ± 0.004 0.025 ± 0.001 3.845 ± 0.171

+ 3 Bridgemd × 1.539 × 1.618 66.76 ± 0.09 1.362 ± 0.003 0.023 ± 0.001 4.708 ± 0.209

DE-2 × 2.000 × 2.000 65.54 ± 0.25 1.499 ± 0.007 0.029 ± 0.003 2.000

ImageNet

Model FLOPs (↓) #Params (↓) ACC (↑) NLL (↓) ECE (↓) DEE (↑)

ResNet (DE-1) × 1.000 × 1.000 75.85 ± 0.06 0.936 ± 0.003 0.019 ± 0.001 1.000

+ 1 Bridgesm × 1.061 × 1.071 76.46 ± 0.06 0.914 ± 0.000 0.012 ± 0.001 1.418 ± 0.034

+ 2 Bridgesm × 1.123 × 1.141 76.60 ± 0.06 0.907 ± 0.000 0.012 ± 0.001 1.537 ± 0.026

+ 3 Bridgesm × 1.184 × 1.212 76.69 ± 0.04 0.905 ± 0.000 0.011 ± 0.001 1.584 ± 0.021

+ 1 Bridgemd × 1.194 × 1.222 77.03 ± 0.07 0.889 ± 0.001 0.013 ± 0.000 1.881 ± 0.022

+ 2 Bridgemd × 1.389 × 1.444 77.37 ± 0.07 0.876 ± 0.001 0.013 ± 0.001 2.341 ± 0.076

+ 3 Bridgemd × 1.583 × 1.665 77.48 ± 0.03 0.870 ± 0.000 0.013 ± 0.000 2.618 ± 0.062

DE-2 × 2.000 × 2.000 77.12 ± 0.04 0.883 ± 0.001 0.012 ± 0.001 2.000
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Figure 4: The cost-performance plots of type I bridges compared to DE on Tiny ImageNet and ImageNet datasets. On
the basis of DE (black dashed line), the upper left is preferable in ACC, and the lower left is preferable in NLL. 12



Classification Performance (Type II)

Table 2: Performance improvement of the ensemble by adding type II bridges as members to existing DE ensembles
on Tiny ImageNet and ImageNet datasets. Bridgesm and Bridgemd denote the small and the medium versions of the
bridge network based on their FLOPs.

Tiny ImageNet

Model FLOPs (↓) #Params (↓) ACC (↑) NLL (↓) ECE (↓) DEE (↑)

DE-4 × 4.000 × 4.000 67.50 ± 0.11 1.381 ± 0.004 0.018 ± 0.001 4.000

+ 1 Bridgesm × 4.058 × 4.067 67.86 ± 0.05 1.334 ± 0.003 0.017 ± 0.002 6.051 ± 0.181

+ 2 Bridgesm × 4.117 × 4.135 68.12 ± 0.09 1.311 ± 0.005 0.015 ± 0.001 8.174 ± 0.465

+ 4 Bridgesm × 4.234 × 4.269 68.47 ± 0.14 1.288 ± 0.004 0.015 ± 0.001 10.340 ± 0.773

+ 6 Bridgesm × 4.351 × 4.404 68.51 ± 0.10 1.278 ± 0.003 0.014 ± 0.001 11.268 ± 0.871

+ 1 Bridgemd × 4.198 × 4.226 68.00 ± 0.11 1.333 ± 0.003 0.019 ± 0.001 6.183 ± 0.120

+ 2 Bridgemd × 4.395 × 4.453 68.33 ± 0.08 1.308 ± 0.003 0.019 ± 0.001 8.489 ± 0.481

+ 4 Bridgemd × 4.791 × 4.906 68.61 ± 0.05 1.281 ± 0.004 0.021 ± 0.003 10.897 ± 0.800

+ 6 Bridgemd × 5.186 × 5.359 68.80 ± 0.09 1.269 ± 0.003 0.021 ± 0.001 12.110 ± 1.083

DE-5 × 5.000 × 5.000 67.90 ± 0.14 1.354 ± 0.003 0.019 ± 0.001 5.000

ImageNet

Model FLOPs (↓) #Params (↓) ACC (↑) NLL (↓) ECE (↓) DEE (↑)

DE-4 × 4.000 × 4.000 77.87 ± 0.04 0.851 ± 0.001 0.012 ± 0.001 4.000

+ 1 Bridgesm × 4.086 × 4.088 77.93 ± 0.02 0.847 ± 0.000 0.012 ± 0.001 4.580 ± 0.052

+ 2 Bridgesm × 4.172 × 4.176 78.00 ± 0.04 0.846 ± 0.000 0.011 ± 0.000 4.739 ± 0.052

+ 4 Bridgesm × 4.343 × 4.351 78.10 ± 0.03 0.846 ± 0.000 0.011 ± 0.001 4.768 ± 0.041

+ 6 Bridgesm × 4.515 × 4.527 78.12 ± 0.05 0.846 ± 0.001 0.011 ± 0.001 4.659 ± 0.037

+ 1 Bridgemd × 4.243 × 4.256 78.14 ± 0.03 0.839 ± 0.000 0.011 ± 0.001 6.123 ± 0.121

+ 2 Bridgemd × 4.487 × 4.512 78.30 ± 0.05 0.833 ± 0.000 0.012 ± 0.001 8.068 ± 0.144

+ 4 Bridgemd × 4.973 × 5.024 78.46 ± 0.04 0.828 ± 0.000 0.012 ± 0.000 9.951 ± 0.163

+ 6 Bridgemd × 5.460 × 5.536 78.56 ± 0.09 0.825 ± 0.000 0.012 ± 0.001 10.760 ± 0.202

DE-5 × 5.000 × 5.000 78.03 ± 0.03 0.844 ± 0.001 0.012 ± 0.001 5.000
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Figure 5: The cost-performance plots of type II bridges compared to DE on Tiny ImageNet and ImageNet datasets.
On the basis of DE (black dashed line), the upper left is preferable in ACC, and the lower left is preferable in NLL.
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Conclusion

We proposed a novel framework for efficient ensembling that reduces inference costs of ensembles with
a lightweight network called bridge networks.

Through empirical validation, we show that

1. Bridge networks can approximate outputs of connecting subspaces quite accurately with minimal
computation cost.

2. DEs augmented with bridge networks can significantly reduce inference costs without big sacrifice
in performance.
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