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▪ Two challenges

▪ Multi-task efficiency

▪ Costly online interactions

RL Real World Application

2

Offline Meta RL with 
Fast Online Adaptation!
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▪ Multi-task data collection

▪ Task-dependent behavior policies 

▪ Limitation

▪ They always require additional information for online adaptation

▪ Offline contexts in FOCAL, MACAW

▪ Oracle reward function in offline meta-training of BOREL

▪ Unsupervised online samples (without rewards) are available in offline 

meta-training of SMAC

Offline Meta RL with Fast Online Adaptation
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Meta-Testing

Few episodes

Offline Meta-RL with Fast Online Adaptation
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▪ Multi-task data collection

▪ Task-dependent behavior policies 

▪ FOCAL, MACAW, BOREL, …

▪ Open problem

▪ How to achieve effective online fast adaptation without 

extra information?

Offline Meta RL with Fast Online Adaptation
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Meta-Testing

Few episodes

Offline Meta-RL with Fast Online Adaptation
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▪ Multi-task data collection

▪ Task-dependent behavior policies 

▪ FOCAL, MACAW, BOREL, …

▪ We first characterize a unique conundrum

▪ Transition-reward distribution shift exists in the offline meta-

RL with online adaptation

Offline Meta RL with Fast Online Adaptation
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▪ What is the consequence of distribution shift?

▪ Inconsistency between offline meta-policy evaluation and 

online adaptation evaluation

Offline Meta RL with Fast Online Adaptation
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▪ Inconsistency dilemma: trust the offline dataset or trust 

new online experience?

▪ Trust the offline dataset due to fast online adaptation!

Offline Meta RL with Fast Online Adaptation
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▪ How to solve transition-reward distribution shift?

▪ In-distribution episodes of offline datasets in online adaptation 

can ensure the performance guarantee!

Offline Meta RL with Fast Online Adaptation
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▪ Theoretical results

▪ Transition-reward distribution shift can lead to unreliable policy 

evaluation

▪ Filtering out out-of-distribution episodes in online adaptation 

can ensure the performance guarantee

▪ Meta-policies with Thompson sampling can generate in-

distribution episodes

Theory
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▪ Require

▪ An uncertainty quantification ℚ

▪ An offline meta-training algorithm 𝔸

▪ Two stages

▪ Reference stage 

▪ Iterative updating stage 

IDAQ: In-Distribution Online Adaptation with 

Uncertainty Quantification 
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▪ Uncertainty quantification 

▪ Prediction Error

▪ Quantify the model error 

▪ Also called “curiosity”

▪ Prediction Variance

▪ Quantify the model variance

▪ Using a bootstrap ensemble 

▪ Return-based

▪ Take an offline bias: offline meta-training can not well-optimize meta-

policies on out-of-distribution states
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▪ Uncertainty quantification 

Experiments
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▪ Uncertainty quantification 

Experiments
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▪ Meta-World ML1

Experiments
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Experiments
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▪ Formalize the transition-reward distribution shift in offline meta-

RL with online adaptation

▪ Introduce IDAQ, a novel in-distribution online adaptation method

▪ Find that a return-based uncertainty quantification performs effectively in 

medium or expert datasets 

▪ IDAQ achieves state-of-the-art performance on Meta-World ML1 

benchmark with 50 tasks

▪ Also perform better or comparably than offline adaptation baselines with 

expert context

▪ Suggest that offline context may not be necessary for meta-testing

Summary
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