

Offline Meta Reinforcement Learning with In-Distribution Online Adaptation

Jianhao Wang^{*}, Jin Zhang^{*}, Haozhe Jiang, Junyu Zhang, Liwei Wang, Chongjie Zhang

Tsinghua University; Huazhong University of Science and Technology; Peking University

^{*}equal contribution

(ICML 2023)

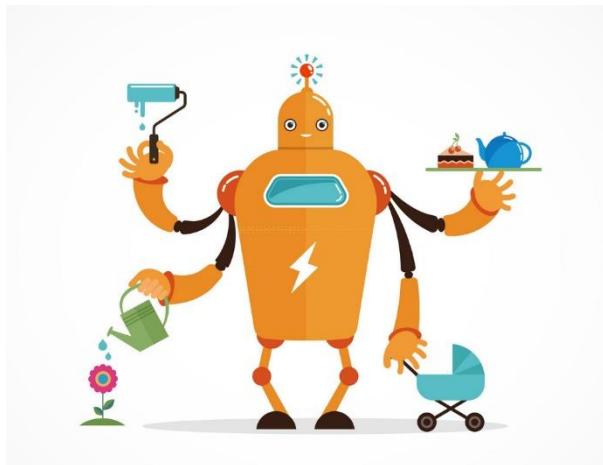
Machine Intelligence Group

清华大学
Tsinghua University

交叉信息研究院
Institute for Interdisciplinary Information Sciences

RL Real World Application

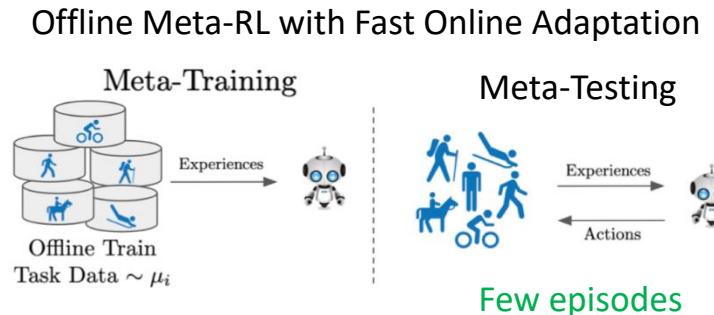
- Two challenges
 - Multi-task efficiency
 - Costly online interactions



Offline Meta RL with
Fast Online Adaptation!

Offline Meta RL with Fast Online Adaptation

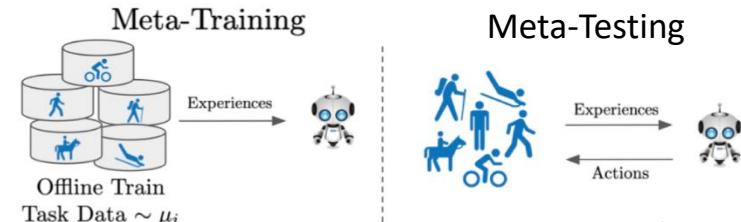
- Multi-task data collection
 - Task-dependent behavior policies
- Limitation
 - They always require **additional information** for online adaptation
 - Offline contexts in FOCAL, MACAW
 - Oracle reward function in offline meta-training of BOREL
 - Unsupervised online samples (without rewards) are available in offline meta-training of SMAC



Offline Meta RL with Fast Online Adaptation

- Multi-task data collection
 - Task-dependent behavior policies
 - FOCAL, MACAW, BOREL, ...
- Open problem
 - How to achieve effective online fast adaptation without extra information?

Offline Meta-RL with Fast Online Adaptation

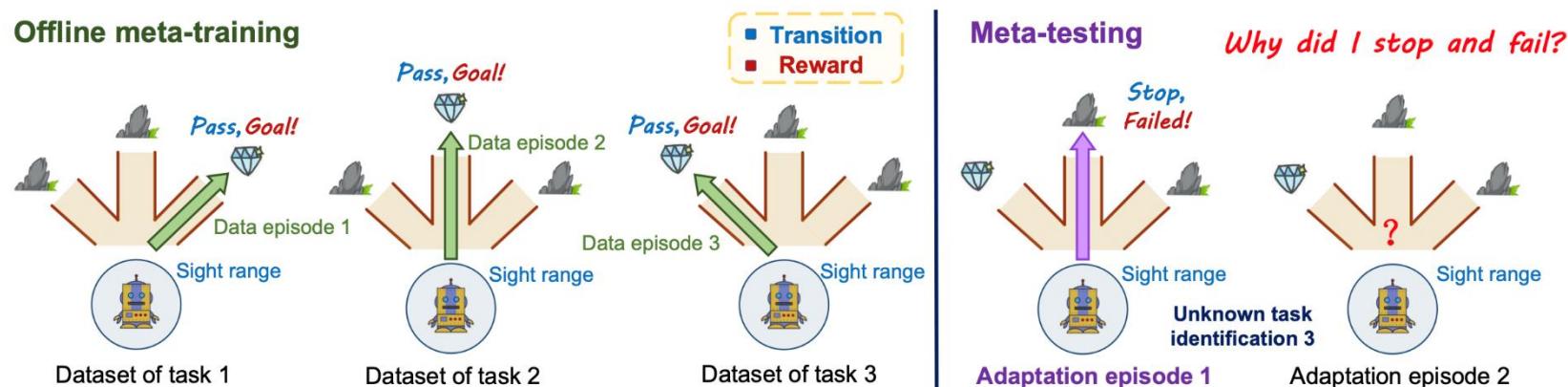


Offline Meta RL with Fast Online Adaptation

- Multi-task data collection
 - Task-dependent behavior policies
 - FOCAL, MACAW, BOREL, ...
- We first characterize a unique conundrum
 - **Transition-reward distribution shift** exists in the offline meta-RL with online adaptation

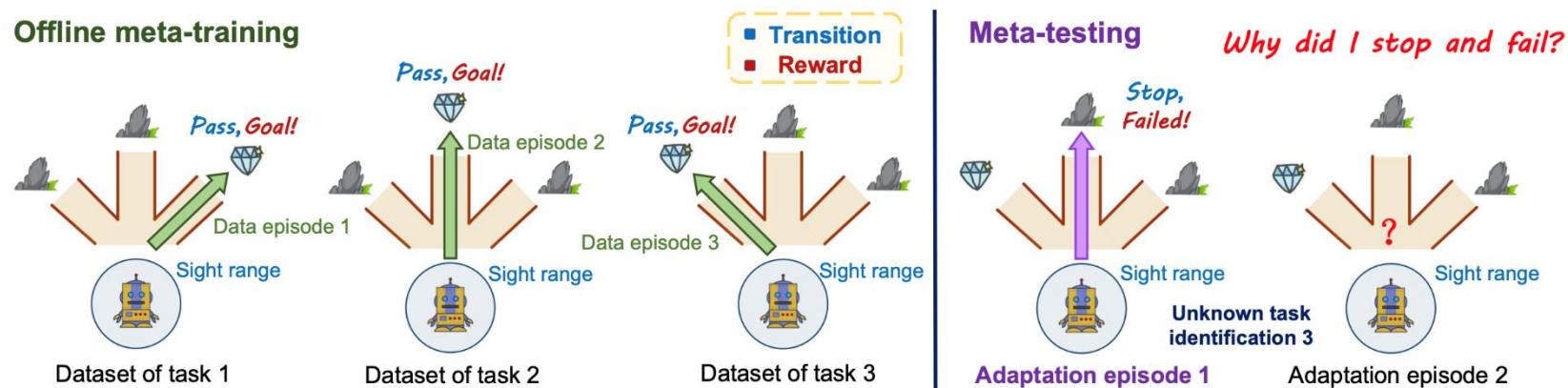
Offline Meta RL with Fast Online Adaptation

- What is the consequence of distribution shift?
 - **Inconsistency** between offline meta-policy evaluation and online adaptation evaluation



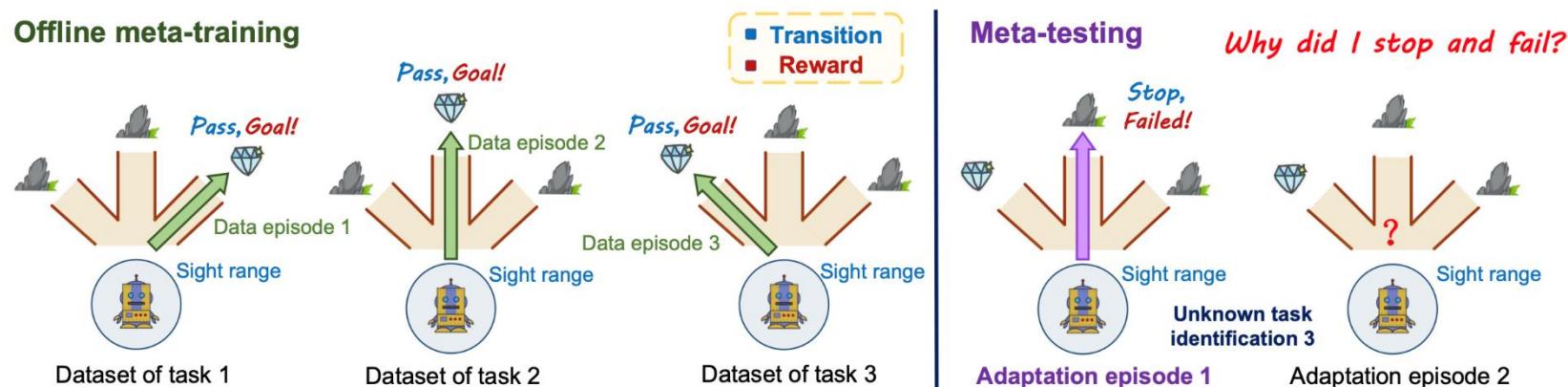
Offline Meta RL with Fast Online Adaptation

- Inconsistency dilemma: trust the offline dataset or trust new online experience?
 - Trust the offline dataset due to fast online adaptation!



Offline Meta RL with Fast Online Adaptation

- How to solve transition-reward distribution shift?
 - In-distribution episodes of offline datasets in online adaptation can ensure the performance guarantee!



Theory

- Theoretical results
 - Transition-reward distribution shift can lead to unreliable policy evaluation
 - Filtering out out-of-distribution episodes in online adaptation can ensure the performance guarantee
 - Meta-policies with Thompson sampling can generate in-distribution episodes

IDAQ: In-Distribution Online Adaptation with Uncertainty Quantification

- **Require**
 - An uncertainty quantification \mathbb{Q}
 - An offline meta-training algorithm \mathbb{A}
- **Two stages**
 - Reference stage
 - Iterative updating stage

Algorithm 1 IDAQ: In-Distribution online Adaptation with uncertainty Quantification

- 1: **Require:** An offline dataset \mathcal{D}^+ , a meta-testing task κ_{test} , the number of iterations n_i , a context-based offline meta-training algorithm \mathbb{A} (i.e., FOCAL), and an in-distribution uncertainty quantification \mathbb{Q}
- 2: Offline meta-train a context encoder $q(z|c)$ and a meta-policy $\pi(a|s, z)$ using an algorithm \mathbb{A} in a dataset \mathcal{D}^+ *{Offline meta-training}*
- 3: Perform reference stage of online adaptation and estimate the in-distribution threshold δ using \mathbb{Q} *{Start online meta-testing}*
- 4: Derive the in-distribution context c_{in} with Eq. (2) and posterior task belief $q(z|c_{in})$
- 5: **for** $t = 1 \dots n_i$ **do** *{Iterative updating stage}*
- 6: Collect an online adaptation episode using the posterior task belief q and meta-policy π in κ_{test}
- 7: Update the in-distribution context c_{in} using \mathbb{Q} , δ and derive the posterior task belief $q(z|c_{in})$
- 8: **end for**
- 9: **Return:** $\pi, q(z|c_{in})$

IDAQ

- Uncertainty quantification

- Prediction Error

- Quantify the model error
 - Also called “curiosity”

- Prediction Variance

- Quantify the model variance
 - Using a bootstrap ensemble

- Return-based

- Take an offline bias: offline meta-training can not well-optimize meta-policies on out-of-distribution states

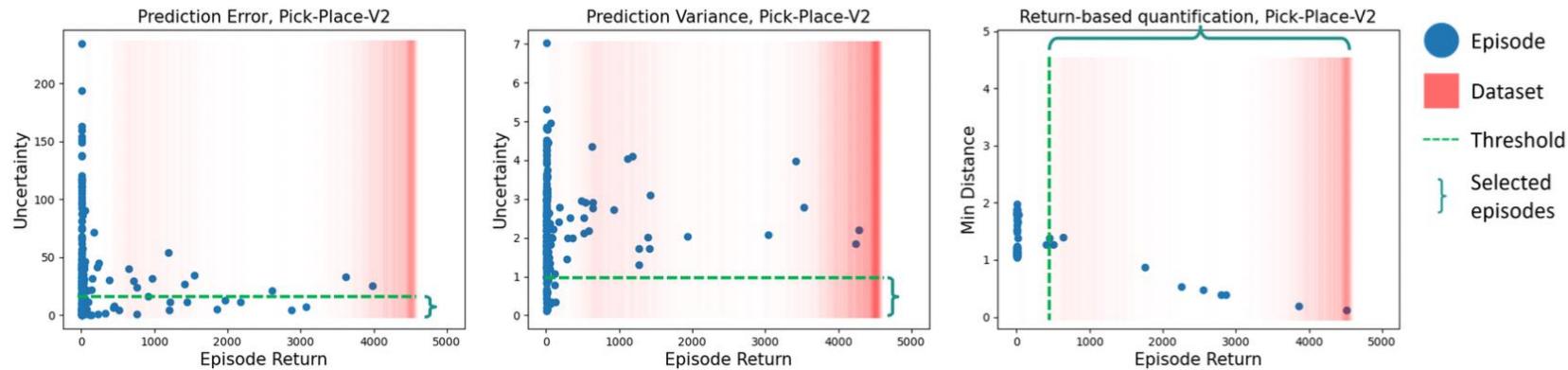
$$\mathbb{Q}_{PE}(\tau_i, z) = \frac{1}{HL} \sum_{t=0}^{H-1} \sum_{i=1}^L |r_t - r_{\phi_i}(s_t, a_t, z)| + \|s_{t+1} - p_{\psi_i}(s_t, a_t, z)\|_2, \quad (3)$$

$$\mathbb{Q}_{PV}(\tau_i, z) = \frac{1}{H} \sum_{t=0}^{H-1} \max_{i,j} |r_{\phi_i}(s_t, a_t, z) - r_{\phi_j}(s_t, a_t, z)| + \|p_{\psi_i}(s_t, a_t, z) - p_{\psi_j}(s_t, a_t, z)\|_2, \quad (4)$$

$$\mathbb{Q}_{RE}(\{\tau_i\}_{i=1}^{n_e}) = -\frac{1}{n_e} \sum_{i=1}^{n_e} \sum_{t=0}^{H-1} r_t^i, \quad (5)$$

Experiments

- Uncertainty quantification



Experiments

▪ Uncertainty quantification

Table 1. Performance of the three uncertainty quantifications and FOCAL on example tasks, a bunch of Meta-World ML1 tasks with normalized scores. “IDAQ+Return” is short for IDAQ with the **Return-based** quantification. For Meta-World tasks, “-V2” is omitted for brevity. “Med” represents results trained on medium quality datasets.

Example Env	IDAQ+Prediction Error	IDAQ+Prediction Variance	IDAQ+Return	FOCAL
Push	0.31 ± 0.13	0.13 ± 0.07	0.55 ± 0.10	0.34 ± 0.14
Pick-Place	0.07 ± 0.05	0.04 ± 0.03	0.20 ± 0.03	0.07 ± 0.02
Soccer	0.18 ± 0.03	0.23 ± 0.03	0.44 ± 0.04	0.11 ± 0.03
Drawer-Close	1.00 ± 0.00	0.99 ± 0.01	0.99 ± 0.02	0.96 ± 0.04
Reach	0.87 ± 0.01	0.49 ± 0.03	0.85 ± 0.03	0.62 ± 0.05
Sweep (Med)	0.15 ± 0.03	0.06 ± 0.02	0.59 ± 0.13	0.38 ± 0.13
Peg-Insert-Side (Med)	0.03 ± 0.02	0.03 ± 0.01	0.30 ± 0.14	0.10 ± 0.07
Point-Robot	-5.70 ± 0.05	-21.29 ± 0.85	-5.10 ± 0.26	-15.38 ± 0.95

Experiments

■ Meta-World ML1

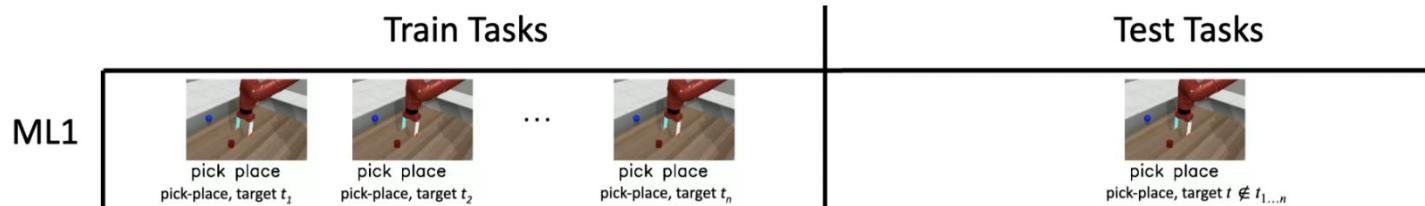


Table 2. Algorithms' normalized scores averaged over 50 Meta-World ML1 task sets. Scores are normalized by expert-level policy return.

IDAQ	FOCAL	MACAW	FOCAL with Expert Context	MACAW with Expert Context	BOReL
0.73 \pm 0.07	0.53 \pm 0.1	0.18 \pm 0.1	0.67 \pm 0.07	0.68 \pm 0.07	0.04 \pm 0.01

Experiments

Table 3. Performance on example tasks, a bunch of Meta-World ML1 tasks with normalized scores.

Example Env	IDAQ	FOCAL	MACAW	BOReL
Coffee-Push	1.26 \pm 0.13	0.66 \pm 0.07	0.01 \pm 0.01	0.00 \pm 0.00
Faucet-Close	1.12 \pm 0.01	1.06 \pm 0.02	0.07 \pm 0.01	0.13 \pm 0.03
Faucet-Open	1.05 \pm 0.02	1.01 \pm 0.02	0.08 \pm 0.04	0.12 \pm 0.05
Door-Close	0.99 \pm 0.00	0.97 \pm 0.01	0.00 \pm 0.00	0.37 \pm 0.19
Drawer-Close	0.99 \pm 0.02	0.96 \pm 0.04	0.53 \pm 0.50	0.00 \pm 0.00
Door-Lock	0.97 \pm 0.01	0.90 \pm 0.02	0.25 \pm 0.11	0.14 \pm 0.00
Plate-Slide-Back	0.96 \pm 0.02	0.58 \pm 0.06	0.21 \pm 0.17	0.01 \pm 0.00
Dial-Turn	0.91 \pm 0.05	0.84 \pm 0.09	0.00 \pm 0.00	0.00 \pm 0.00
Handle-Press	0.88 \pm 0.05	0.87 \pm 0.02	0.28 \pm 0.10	0.01 \pm 0.00
Hammer	0.84 \pm 0.06	0.59 \pm 0.07	0.10 \pm 0.01	0.09 \pm 0.01
Button-Press	0.74 \pm 0.08	0.68 \pm 0.14	0.02 \pm 0.01	0.01 \pm 0.01
Push-Wall	0.71 \pm 0.15	0.43 \pm 0.06	0.23 \pm 0.18	0.00 \pm 0.00
Hand-Insert	0.63 \pm 0.04	0.29 \pm 0.07	0.02 \pm 0.01	0.00 \pm 0.00
Peg-Unplug-Side	0.56 \pm 0.07	0.19 \pm 0.09	0.00 \pm 0.00	0.00 \pm 0.00
Bin-Picking	0.53 \pm 0.16	0.31 \pm 0.21	0.66 \pm 0.11	0.00 \pm 0.00
Soccer	0.44 \pm 0.04	0.11 \pm 0.03	0.38 \pm 0.31	0.04 \pm 0.02
Coffee-Pull	0.40 \pm 0.05	0.23 \pm 0.04	0.19 \pm 0.12	0.00 \pm 0.00
Pick-Place-Wall	0.28 \pm 0.12	0.09 \pm 0.04	0.39 \pm 0.25	0.00 \pm 0.00
Pick-Out-Of-Hole	0.26 \pm 0.25	0.16 \pm 0.16	0.59 \pm 0.06	0.00 \pm 0.00
Handle-Pull-Side	0.14 \pm 0.04	0.13 \pm 0.09	0.00 \pm 0.00	0.00 \pm 0.00
Cheetah-Vel	-171.5 \pm 22.00	-287.7 \pm 30.6	-234.0 \pm 23.5	-301.4 \pm 36.8
Point-Robot	-5.10 \pm 0.26	-15.38 \pm 0.95	-14.61 \pm 0.98	-17.28 \pm 1.16
Point-Robot-Sparse	7.78 \pm 0.64	0.83 \pm 0.37	0.00 \pm 0.00	0.00 \pm 0.00

Summary

- Formalize the transition-reward distribution shift in offline meta-RL with online adaptation
- Introduce IDAQ, a novel in-distribution online adaptation method
 - Find that a return-based uncertainty quantification performs effectively in medium or expert datasets
- IDAQ achieves state-of-the-art performance on Meta-World ML1 benchmark with 50 tasks
 - Also perform better or comparably than offline adaptation baselines with expert context
 - Suggest that offline context may not be necessary for meta-testing

Thanks for your listening

Machine Intelligence Group

清华大学 交叉信息研究院
Tsinghua University Institute for Interdisciplinary Information Sciences