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Deep Equilibrium Models (DEQs)

* Replace layer-wise propagation in conventional neural
networks with fixed-point iteration
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Weight-tied input-injected layer: Deep Equilibrium (DEQ) Models:
21 = fy(zll;x) = O'(WZ[IL]‘ +Ux + ) Solve z* = fy(z*;x) (forward)
(just a simple example) % _ _%(1_ %)—1% (backward)

* The nature of neural dynamics {z"} in DEQ models

Figures from the poster of Bai et al., (2019)



Robustness of DEQs

e Certificated robustness requires careful parameterization;

e Adversarial training for DEQs (Gurumurthy et al, 2021; Yang
et al., 2022) shows inferior robustness performance
compared with deep network counterparts
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Robustness of DEQs

e Certificated robustness requires careful parameterization;

e Adversarial training for DEQs (Gurumurthy et al, 2021; Yang
et al., 2022) shows inferior robustness performance
compared with deep network counterparts

e Ours: AT + explicit regulations along the neural dynamics
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The Deviation of Intermediate z!!]

* Assume that a clean input X induces {Z[t] } , while
a perturbed input x + AX induces {Z[t]}. Since

z U = fo (2l %), Zlt 1 = fg(i[t];x—l— AX)
We have
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Perturbation from x Accumulation in z

* The deviation of neural dynamics is caused by
(i) input perturbation and (ii) error accumulation



Input Entropy Reduction

 How to reduce the effect of input perturbation?

* Observation: perturbed inputs yield higher
prediction entropy, although converging similarly

— Drawing the distribution:
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Input Entropy Reduction

 How to reduce the effect of input perturbation?

* Observation: perturbed inputs yield higher
prediction entropy, although converging similarly

— An exampled visualization along the neural dynamics:
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Input Entropy Reduction

How to reduce the effect of input perturbation?

Observation: perturbed inputs yield higher
prediction entropy, although converging similarly

During inference, update the input along the neural
dynamics by minimizing the prediction entropy
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S.t. z!t+1 — Solve (z = fO(Z; X + u[t])Q Z[St]) ;
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{ull} can be solved in the manner of iterative PGD



Adv. Loss from Random zlt!

How to reduce the effect of error accumulation?

2 — 2| = | fo(2"%;x + Ax) — fo(2";%)|
fo(2";x+A%)— fo(2"; %) + fe(i[t];X)—fe(z[t];X)ll
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Observation: All intermediate z* = fo(2”; %)
z!tls can be used to calculate e
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to calculate adversarial loss to O O
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Results and Future Work

* Higher adversarial robustness on CIFAR-10 compared
to strong deep network baselines trained with AT

ARCHITECTURE METHOD CLEAN PGD AA ALL

RESNET-18 PANG ET AL. (2021) 81.47 - 49.14 49.14
YANG ET AL. (2022) 7492 5046 50.33 50.33

DEQ-LARGE + INPUT ENTROPY REDUCTION 73.80 51.41 50.52 50.52
+ LOSS FROM RANDOM 2z 77.64 51.10 49.64 49.64
+ BOTH 78.89 55.18 51.50 51.50

e Future work

— Evaluation on larger benchmarks

— Continue to exploit the structural
properties of DEQs to design
tailored adversarial defenses




