Improving Adversarial Robustness of Deep Equilibrium Models with Explicit Regulations Along the Neural Dynamics

Zonghan Yang, Peng Li, Tianyu Pang, Yang Liu Tsinghua University & Sea Al Lab

Deep Equilibrium Models (DEQs)

 Replace layer-wise propagation in conventional neural networks with fixed-point iteration

• The nature of neural dynamics $\{\mathbf{z}^{[t]}\}$ in DEQ models

Robustness of DEQs

- Certificated robustness requires careful parameterization;
- Adversarial training for DEQs (Gurumurthy et al, 2021; Yang et al., 2022) shows inferior robustness performance compared with deep network counterparts

Robustness of DEQs

- Certificated robustness requires careful parameterization;
- Adversarial training for DEQs (Gurumurthy et al, 2021; Yang et al., 2022) shows inferior robustness performance compared with deep network counterparts
- Ours: AT + explicit regulations along the neural dynamics

The Deviation of Intermediate $\mathbf{z}^{[t]}$

• Assume that a clean input **x** induces $\{\mathbf{z}^{[t]}\}$, while a perturbed input $\mathbf{x} + \Delta \mathbf{x}$ induces $\{\tilde{\mathbf{z}}^{[t]}\}$. Since

$$\mathbf{z}^{[t+1]} = f_{\theta}(\mathbf{z}^{[t]}; \mathbf{x}), \ \tilde{\mathbf{z}}^{[t+1]} = f_{\theta}(\tilde{\mathbf{z}}^{[t]}; \mathbf{x} + \Delta \mathbf{x})$$

We have

$$\begin{split} \|\tilde{\mathbf{z}}^{[t+1]} - \mathbf{z}^{[t+1]}\| &= \|f_{\theta}(\tilde{\mathbf{z}}^{[t]}; \mathbf{x} + \Delta \mathbf{x}) - f_{\theta}(\mathbf{z}^{[t]}; \mathbf{x})\| \\ &= \|f_{\theta}(\tilde{\mathbf{z}}^{[t]}; \mathbf{x} + \Delta \mathbf{x}) - f_{\theta}(\tilde{\mathbf{z}}^{[t]}; \mathbf{x}) + f_{\theta}(\tilde{\mathbf{z}}^{[t]}; \mathbf{x}) - f_{\theta}(\mathbf{z}^{[t]}; \mathbf{x})\| \\ &\leq \underbrace{\|f_{\theta}(\tilde{\mathbf{z}}^{[t]}; \mathbf{x} + \Delta \mathbf{x}) - f_{\theta}(\tilde{\mathbf{z}}^{[t]}; \mathbf{x})\|}_{\text{Perturbation from } \mathbf{x}} + \underbrace{\|f_{\theta}(\tilde{\mathbf{z}}^{[t]}; \mathbf{x}) - f_{\theta}(\mathbf{z}^{[t]}; \mathbf{x})\|}_{\text{Accumulation in } \mathbf{z}} \end{split}$$

The deviation of neural dynamics is caused by
(i) input perturbation and (ii) error accumulation

Input Entropy Reduction

- How to reduce the effect of input perturbation?
- Observation: perturbed inputs yield higher prediction entropy, although converging similarly

– Drawing the distribution:

Input Entropy Reduction

- How to reduce the effect of input perturbation?
- Observation: perturbed inputs yield higher prediction entropy, although converging similarly
 - An exampled visualization along the neural dynamics:

Input Entropy Reduction

- How to reduce the effect of input perturbation?
- Observation: perturbed inputs yield higher prediction entropy, although converging similarly
- During inference, update the input *along the neural dynamics* by minimizing the prediction entropy

$$\begin{split} \min_{\mathbf{u}^{[1]},\cdots,\mathbf{u}^{[N]}} & H(\mathbf{z}^{[N]}), \\ \text{s.t.} & \mathbf{z}^{[t+1]} = \text{Solve}\Big(\mathbf{z} = f_{\theta}(\mathbf{z}; \mathbf{x} + \mathbf{u}^{[t]}); \ \mathbf{z}^{[\leq t]}\Big), \\ & \mathbf{u}^{[t]} \in [-\epsilon, \epsilon]^{l} \end{split}$$

• $\{\mathbf{u}^{[t]}\}$ can be solved in the manner of iterative PGD

Adv. Loss from Random $\mathbf{z}^{[t]}$

• How to reduce the effect of error accumulation?

$$\begin{split} \|\tilde{\mathbf{z}}^{[t+1]} - \mathbf{z}^{[t+1]}\| &= \|f_{\theta}(\tilde{\mathbf{z}}^{[t]}; \mathbf{x} + \Delta \mathbf{x}) - f_{\theta}(\mathbf{z}^{[t]}; \mathbf{x})\| \\ &= \|f_{\theta}(\tilde{\mathbf{z}}^{[t]}; \mathbf{x} + \Delta \mathbf{x}) - f_{\theta}(\tilde{\mathbf{z}}^{[t]}; \mathbf{x}) + f_{\theta}(\tilde{\mathbf{z}}^{[t]}; \mathbf{x}) - f_{\theta}(\mathbf{z}^{[t]}; \mathbf{x})\| \\ &\leq \underbrace{\|f_{\theta}(\tilde{\mathbf{z}}^{[t]}; \mathbf{x} + \Delta \mathbf{x}) - f_{\theta}(\tilde{\mathbf{z}}^{[t]}; \mathbf{x})\|}_{\text{Perturbation from } \mathbf{x}} + \underbrace{\|f_{\theta}(\tilde{\mathbf{z}}^{[t]}; \mathbf{x}) - f_{\theta}(\mathbf{z}^{[t]}; \mathbf{x})\|}_{\text{Accumulation in } \mathbf{z}}. \end{split}$$

- Observation: All intermediate $\mathbf{z}^{[t]}$ s can be used to calculate the loss function
- Use random intermediate $\mathbf{z}^{[t]}$ to calculate adversarial loss to impose explicit regulations

Results and Future Work

 Higher adversarial robustness on CIFAR-10 compared to strong deep network baselines trained with AT

ARCHITECTURE	Метнор	CLEAN	PGD	AA	All
RESNET-18	PANG ET AL. (2021)	81.47	-	49.14	49.14
DEQ-Large	Yang et al. (2022) + Input Entropy Reduction + Loss from Random $\mathbf{z}^{[t]}$ + Both	74.92 73.80 77.64 78.89	50.46 51.41 51.10 55.18	50.33 50.52 49.64 51.50	50.33 50.52 49.64 51.50

• Future work

- Evaluation on larger benchmarks
- Continue to exploit the structural properties of DEQs to design tailored adversarial defenses

