Comparison of meta-learners for estimating multi-valued treatment heterogeneous effects

ICML 2023 - Honolulu, Hawai

Naoufal Acharki^{, \diamond}, Ramiro Lugo^{\diamond}, Antoine Bertoncello^{\diamond} and Josselin Garnier [•] June 30, 2023

CMAP, Ecole polytechnique, Institut Polytechnique de Paris.
[◊] TotalEnergies One Tech.

Context: Heterogeneous Treatments Effects estimation

- *i* = 1, ..., *n*: an individual subject to a treatment.
- *T*: the discrete treatment assignment variable.
- \$\mathcal{T} = \$\{t_0, t_1, \ldots, t_K\$}\$: the support of the treatment assignment.
- $X \in \mathbb{R}^d$: vector of *d* covariates (confounders).
- $Y_{\rm obs} \in \mathbb{R}$: the observed outcome corresponding to the treatment \mathcal{T} .
- Y(t): the counterfactual outcome that would have been observed under treatment level t ∈ T.

Goal: Estimate the Conditional Average Treatment Effect (CATE) of T on Y

$$au_k(m{x}) = \mathbb{E}[Y(t_k) - Y(t_0) | m{X} = m{x}] \;\; ext{for} \; k = 1, ..., K$$

Rubin Causal Model [Rubin, 1974]

Context: Heterogeneous Treatments Effects estimation

Binary treatments Various ML-based models are built to estimate the CATE (e.g. Causal Forests [Wager and Athey, 2018], Bayesian Causal Forests [Hahn et al., 2020], SIN [Kaddour et al., 2021] etc.)

Discrete and continuous treatments Most existing work tend to extend naivly existing approaches for binary treatments.

Problem 1: We need to simplify the selection task and the model's interpretation

Problem 2: The heterogeineity of the treatment and the heterogeineity of effects cannot be distinguished [Heiler and Knaus, 2022].

Problem 3: We cannot identify the key parameters on the performances of estimators (e.g. the number of treatments K).

Tools: Meta-Learners for estimating the CATE

A Meta-learner [Künzel et al., 2019] is a statistical framework (developed initially for binary treatments) that models and estimates the CATE

$$au_k(\mathbf{x}) = \mathbb{E}[Y(t_k) - Y(t_0) | \mathbf{X} = \mathbf{x}].$$

Purpose: Understand the strengths and weaknesses of algorithms from a theoretical viewpoint.

Remark: Most previous ML algorithms fall are seen theoretically as a meta-learner.

Naive estimators that estimate the CATE directly by a plug-in difference.

The **T-learner** (T stands for *two*): Compute the CATE as plug-in difference $\hat{\tau}_k^{(T)}(\mathbf{x}) = \hat{\mu}_{t_k}(\mathbf{x}) - \hat{\mu}_{t_0}(\mathbf{x})$ using two models models μ_{t_k} and μ_{t_0} .

The **S**-learner (S stands for *single*): Compute the CATE as plug-in difference $\hat{\tau}_k^{(S)}(\mathbf{x}) = \hat{\mu}(\mathbf{x}, t_k) - \hat{\mu}(\mathbf{x}, t_0)$ using a $\mu(w, \mathbf{x}) = \mathbb{E}(Y_{obs} \mid T = w, \mathbf{X} = \mathbf{x})$.

The naive X-learner (X- stands for *cross*): Compute the CATE as plug-in difference $\hat{\tau}_k^{(nv,X)}(\mathbf{x}) = g(\mathbf{x}) \ \hat{\tau}^{(k)}(\mathbf{x}) + (1 - g(\mathbf{x})) \ \hat{\tau}^{(0)}(\mathbf{x})$. with g some given weighting function.

Pseudo-outcome meta-learners

Debiased learners that estimate CATE by regressing a pseudo-outcome Z_k : $\mathbb{E}(Z_k \mid \mathbf{X}) = \tau_k(\mathbf{X})$.

M-learner: M stands for the *modified* weighted outcome:

$$Z_k^M = \frac{\mathbf{1}\{T = t\}}{\widehat{r}(t, \mathbf{X})} Y_{\text{obs}} - \frac{\mathbf{1}\{T = t_0\}}{\widehat{r}(t_0, \mathbf{X})} Y_{\text{obs}} \text{ where } r(T, \mathbf{X}) = \mathbb{P}(T \mid \mathbf{X}).$$

DR-learner: DR stands for the *Doubly-Robustness* with respect to mispecification of \hat{r} and $\hat{\mu}_t$:

$$Z_k^{DR} = rac{Y_{ ext{obs}} - \widehat{\mu}_{\mathcal{T}}(\boldsymbol{X})}{\widehat{r}(t_k, \boldsymbol{X})} \mathbf{1}\{T = t_k\} - rac{Y_{ ext{obs}} - \widehat{\mu}_{\mathcal{T}}(\boldsymbol{X})}{\widehat{r}(t_0, \boldsymbol{X})} \mathbf{1}\{T = t_0\} + \widehat{\mu}_{t_k}(\boldsymbol{X}) - \widehat{\mu}_{t_0}(\boldsymbol{X}).$$

X-learner: X stands for the Cross estimation procedure over all treatments:

$$egin{aligned} &Z_k^X = \mathbf{1}\{T = t_k\}(Y_{ ext{obs}} - \widehat{\mu}_{t_0}(oldsymbol{X})) + \sum_{k'
eq k} \mathbf{1}\{T = t_{k'}\}(\widehat{\mu}_{t_k}(oldsymbol{X}) - Y_{ ext{obs}}) \ &+ \sum_{k'
eq k} \mathbf{1}\{T = t_{k'}\}(\widehat{\mu}_{t_{k'}}(oldsymbol{X}) - \widehat{\mu}_{t_0}(oldsymbol{X})). \end{aligned}$$

 \widehat{r} and $\widehat{\mu}_t$ are two estimators of $r(t, \mathbf{x}) = \mathbb{P}(T = t \mid \mathbf{X} = \mathbf{x})$ and $\mu_t(\mathbf{x}) = \mathbb{E}[Y(t) \mid \mathbf{X} = \mathbf{x}]$.

Neyman orthogonality based learners

Learners that use the generalized Robinson [1988] decomposition and estimate CATEs by minimizing (jointly or separatly) a loss function (ℓ_R for **R-learner** or $\ell_{R,Bin}$ for **Bin R-learner**).

The **R-learner** estimates all K CATE models $\{\tau_t\}_k$ by addressing the problem:

$$\{\widehat{\tau}_k^{(\mathrm{R})}\}_{k=1}^K = \arg\min_k \frac{1}{n} \sum_{i=1}^n \ell_R(\boldsymbol{X}_i).$$

The **Bin R-learner** estimates separately CATE models τ_k by addressing the problem:

$$\widehat{\tau}^{(\mathrm{R,Bin})} = \arg\min_{k} \frac{1}{n} \sum_{i=1}^{n} \ell_{R,Bin}(\boldsymbol{X}_{i}).$$

Upper bounds on error

Assuming that $Y(t) = f(t, \mathbf{X}) + \varepsilon(t)$ where $f(t, \mathbf{x}) = f(\mathbf{x})^{\top} \beta_t$, the Ordinary Least Square estimators $\hat{\beta}_{t_k}^*$ have covariance matrix $\mathbb{V}(\hat{\beta}_{t_k}^*) = \mathbf{C}/n$ whose terms are bounded by:

Theorem

$$\mathcal{E}^{T} = \mathcal{E}^{X,nv} = \mathcal{O}\left(\frac{1}{\rho(t_{k})} + \frac{1}{\rho(t_{0})}\right) \text{ for the T- and naive X-learners,}$$
$$\mathcal{E}^{M} = \mathcal{O}\left(\frac{1}{r_{\min}^{1+\epsilon}}\right) \text{ for the M-learner,}$$
$$\mathcal{E}^{DR} = \mathcal{O}\left(\frac{\operatorname{err}(\widehat{\mu}_{t_{k}}) + \operatorname{err}(\widehat{\mu}_{t_{0}})}{r_{\min}^{1+\epsilon}}\right) \text{ for the DR-learner,}$$
$$\mathcal{E}^{X} = \mathcal{O}\left(\mathcal{K}^{2}\sum_{k'\neq k} \operatorname{err}(\widehat{\mu}_{t_{k'}})\right) \text{ for the X-learner.}$$

where $\mathbb{P}(T = t) = \rho(t) > 0$, r_{\min} the lower bound of propensity score and for all $\epsilon > 0$

Summary table of multi-treatments meta-learners

Meta-learner	Advantages	Disadvantages
T-learner (naive X-learner)	Simple approach	Selection bias Low samples
S-learner	Simple approach	Confounding effects Regularization bias
M-learner	Consistency	High variance
DR-learner	Consistency Doubly Robust	Possibly high variance
X-learner	Consistency Low variance	Non-intuitive
R-learner	Interaction effects	Non-identifiability
Bin R-learner	Identifiability	Computational cost

Conclusion

- Highlighting the difference between the naive and generalization versions of both X- and R-learners.
- Demonstrating theoretically the X-learner performances with multi-treatments.
- Identifying the impact of the number of treatment levels and the lower bound of the propensity score on the M-, DR and X-learners.
- To-do: Extend this analysis to Causal Inference with continuous treatments.

References

- P. Heiler and M. C. Knaus. Effect or treatment heterogeneity? policy evaluation with aggregated and disaggregated treatments, 2022.
- S. R. Künzel, J. S. Sekhon, P. J. Bickel, and B. Yu. Metalearners for estimating heterogeneous treatment effects using machine learning. *Proceedings of the National Academy of Sciences*, 116:4156–4165, Feb 2019. ISSN 1091-6490.
- P. M. Robinson. Root-n-consistent semiparametric regression. *Econometrica*, 56(4):931–954, 1988.
- D. Rubin. Estimating causal effects if treatment in randomized and nonrandomized studies. J. Educ. Psychol., 66, 01 1974.