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Context: Heterogeneous Treatments Effects estimation
• i = 1, ... , n: an individual subject to a treatment.

• T : the discrete treatment assignment variable.

• T = {t0, t1, ... , tK }: the support of the treatment
assignement.

• X ∈ Rd : vector of d covariates (confounders).

• Yobs ∈ R: the observed outcome corresponding to
the treatment T .

• Y (t): the counterfactual outcome that would have
been observed under treatment level t ∈ T .

Rubin Causal Model [Rubin, 1974]

Goal: Estimate the Conditional Average Treatment Effect (CATE) of T on Y

τk(x) = E[Y (tk) − Y (t0)|X = x] for k = 1, ... , K
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Context: Heterogeneous Treatments Effects estimation

Binary treatments Various ML-based models are built to estimate the CATE (e.g. Causal
Forests [Wager and Athey, 2018], Bayesian Causal Forests [Hahn et al., 2020], SIN [Kaddour et
al., 2021] etc.)

Discrete and continuous treatments Most existing work tend to extend naivly existing
approaches for binary treatments.

Problem 1: We need to simplify the selection task and the model’s interpretation

Problem 2: The heterogeineity of the treatment and the heterogeineity of effects cannot be
distinguished [Heiler and Knaus, 2022].

Problem 3: We cannot identify the key parameters on the performances of estimators (e.g. the
number of treatments K ).
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Tools: Meta-Learners for estimating the CATE

A Meta-learner [Künzel et al., 2019] is a statistical framework (developed initially for binary
treatments) that models and estimates the CATE

τk(x) = E[Y (tk) − Y (t0)|X = x].

Purpose: Understand the strengths and weaknesses of algorithms from a theoretical viewpoint.

Remark: Most previous ML algorithms fall are seen theoretically as a meta-learner.
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Direct plug-in meta-learners

Naive estimators that estimate the CATE directly by a plug-in difference.

The T-learner (T stands for two): Compute the CATE as plug-in difference
τ̂

(T)
k (x) = µ̂tk (x) − µ̂t0(x) using two models models µtk and µt0 .

The S-learner (S stands for single): Compute the CATE as plug-in difference
τ̂

(S)
k (x) = µ̂(x, tk) − µ̂(x, t0) using a µ(w , x) = E(Yobs | T = w , X = x).

The naive X-learner (X- stands for cross): Compute the CATE as plug-in difference
τ̂

(nv,X)
k (x) = g(x) τ̂ (k)(x) + (1 − g(x)) τ̂ (0)(x). with g some given weighting function.
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Pseudo-outcome meta-learners

Debiased learners that estimate CATE by regressing a pseudo-outcome Zk : E(Zk | X) = τk(X).

M-learner: M stands for the modified weighted outcome:

ZM
k = 1{T = t}

r̂(t, X) Yobs − 1{T = t0}
r̂(t0, X) Yobs where r(T , X) = P(T | X).

DR-learner: DR stands for the Doubly-Robustness with respect to mispecification of r̂ and µ̂t :

ZDR
k = Yobs − µ̂T (X)

r̂(tk , X) 1{T = tk} − Yobs − µ̂T (X)
r̂(t0, X) 1{T = t0} + µ̂tk (X) − µ̂t0(X).

X-learner: X stands for the Cross estimation procedure over all treatments:

ZX
k = 1{T = tk}(Yobs − µ̂t0(X)) +

∑
k′ ̸=k

1{T = tk′}(µ̂tk (X) − Yobs)

+
∑
k′ ̸=k

1{T = tk′}(µ̂tk′ (X) − µ̂t0(X)).

r̂ and µ̂t are two estimators of r(t, x) = P(T = t | X = x) and µt(x) = E[Y (t) | X = x].
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Neyman orthogonality based learners

Learners that use the generalized Robinson [1988] decomposition and estimate CATEs by
minimizing (jointly or separatly) a loss function (ℓR for R-learner or ℓR,Bin for Bin R-learner).

The R-learner estimates all K CATE models {τt}k by addressing the problem:

{τ̂
(R)
k }K

k=1 = arg min
k

1
n

n∑
i=1

ℓR(X i).

The Bin R-learner estimates separately CATE models τk by addressing the problem:

τ̂ (R,Bin) = arg min
k

1
n

n∑
i=1

ℓR,Bin(X i).
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Upper bounds on error

Assuming that Y (t) = f (t, X) + ε(t) where f (t, x) = f (x)⊤βt , the Ordinary Least Square
estimators β̂

∗
tk

have covariance matrix V
(
β̂

∗
tk

)
= C/n whose terms are bounded by:

Theorem

ET = EX ,nv = O
(

1
ρ(tk) + 1

ρ(t0)

)
for the T- and naive X-learners,

EM = O
(

1
r1+ϵ
min

)
for the M-learner,

EDR = O
(

err(µ̂tk ) + err(µ̂t0)
r1+ϵ
min

)
for the DR-learner,

EX = O
(

K 2
∑
k′ ̸=k

err(µ̂tk′ )
)

for the X-learner.

where P(T = t) = ρ(t) > 0, rmin the lower bound of propensity score and for all ϵ > 0
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Summary table of multi-treatments meta-learners

Meta-learner Advantages Disadvantages

T-learner Simple approach Selection bias
(naive X-learner) Low samples

S-learner Simple approach Confounding effects
Regularization bias

M-learner Consistency High variance

DR-learner Consistency Possibly high variance
Doubly Robust

X-learner Consistency Non-intuitive
Low variance

R-learner Interaction effects Non-identifiability

Bin R-learner Identifiability Computational cost
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Conclusion

• Highlighting the difference between the naive and generalization versions of both X- and
R-learners.

• Demonstrating theoretically the X-learner performances with multi-treatments.

• Identifying the impact of the number of treatment levels and the lower bound of the
propensity score on the M-, DR and X-learners.

• To-do: Extend this analysis to Causal Inference with continuous treatments.
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