# Picture of the space of typical learnable tasks

Rahul Ramesh<sup>†</sup>, Jialin Mao<sup>†</sup>, Itay Griniasty<sup>§</sup>, Han Kheng Teoh<sup>§</sup>, Rubing Yang<sup>†</sup>, Mark K. Transtrum<sup>¶</sup>, James P. Sethna<sup>§</sup>, Pratik Chaudhari<sup>†</sup>

 $^{\dagger}$  University of Pennsylvania,  $^{\$}$  Cornell University,  $^{\P}$  Brigham Young University







# Motivation



# **Motivation**



Why are neural networks able to find representations that capture the shared structure in data?

# **Prediction Space**

We analyze the training trajectories of neural networks in prediction space.

## **Prediction Space**

We analyze the training trajectories of neural networks in prediction space.

Consider a neural network with weights w and inputs  $\{x_i\}_{i=1}^N$ . The predictions

$$P_{w} = \begin{pmatrix} p_{w}(y=1 \mid x_{1}) & p_{w}(y=2 \mid x_{1}) & \cdots & p_{w}(y=C \mid x_{1}) \\ p_{w}(y=1 \mid x_{2}) & p_{w}(y=2 \mid x_{2}) & \cdots & p_{w}(y=C \mid x_{2}) \\ \vdots & \vdots & \vdots & \vdots \\ p_{w}(y=1 \mid x_{N}) & p_{w}(y=2 \mid x_{N}) & \cdots & p_{w}(y=C \mid x_{N}) \end{pmatrix}$$

is an  $N \times C$  dimensional object.

## **Trajectories in Prediction Space**

We convert training trajectories in weight space

 $(w_1, w_2, \cdots, w_T)$ 

into trajectories in prediction space

$$(P_{w_1}, P_{w_2}, \cdots, P_{w_T}).$$

# **Trajectories in Prediction Space**

We convert training trajectories in weight space

$$(w_1, w_2, \cdots, w_T)$$

into trajectories in prediction space

$$(P_{w_1}, P_{w_2}, \cdots, P_{w_T}).$$



InPCA reveals that the training trajectories are effectively low-dimensional in prediction space.

We use tools from information geometry to study the prediction space.

Probabilistic model  $P_w$  is a point on a statistical manifold with the metric being the Fisher information metric.

We use tools from information geometry to study the prediction space.

Probabilistic model  $P_w$  is a point on a statistical manifold with the metric being the Fisher information metric.

We consider

$$\sqrt{P_w} = \begin{pmatrix} \sqrt{p_w(y=1 \mid x_1)} & \sqrt{p_w(y=2 \mid x_1)} & \cdots & \sqrt{p_w(y=C \mid x_1)} \\ \sqrt{p_w(y=1 \mid x_2)} & \sqrt{p_w(y=2 \mid x_2)} & \cdots & \sqrt{p_w(y=C \mid x_2)} \\ \vdots & \vdots & \vdots & \vdots \\ \sqrt{p_w(y=1 \mid x_i)} & \sqrt{p_w(y=2 \mid x_i)} & \cdots & \sqrt{p_w(y=C \mid x_i)} \\ \vdots & \vdots & \vdots & \vdots \\ \sqrt{p_w(y=1 \mid x_N)} & \sqrt{p_w(y=2 \mid x_N)} & \cdots & \sqrt{p_w(y=C \mid x_N)} \end{pmatrix},$$

and note that L2 norm of each row 1.

We think of  $\sqrt{P_w}$  as a point on the product of N spheres.

We think of  $\sqrt{P_w}$  as a point on the product of N spheres.

The geodesic under the FIM is exactly the great circle distance, i.e.,

$$\sqrt{P_{u,v}^{\lambda}} = \frac{\sin((1-\lambda)d_G)}{\sin(d_G)}\sqrt{P_u} + \frac{\sin(\lambda d_G)}{\sin(d_G)}\sqrt{P_v}, \qquad \lambda \in [0,1].$$

#### **Computational Info. Geometry**

Equipped with these ideas, we study the trajectories with the following tools:



#### **Computational Info. Geometry**

Equipped with these ideas, we study the trajectories with the following tools:



Geometric progress

Riemann Length

#### Comparing curves

 $t_w = \inf_{\lambda \in [0,1]} d_G(P_w, P_{0,*}^\lambda)$ 

$$L = 2 \int_0^1 \sqrt{d_B(P_{w(t)}, P_{w(t+dt)})}$$

 $d_{\text{traj}}(\tau_u,\tau_v) = \int_0^1 d_B(P_{u(t)},P_{v(t)}) \mathsf{d} t$ 

#### **Results - Training on different tasks**



# **Results - Self-supervised learning**



#### **Results - Episodic meta-learning**



# Conclusion

We develop tools to study the training trajectories of representations in prediction space.

# Conclusion

We develop tools to study the training trajectories of representations in prediction space.

These trajectories are effectively low-dimensional in prediction space, but we don't fully understand why.

# Conclusion

We develop tools to study the training trajectories of representations in prediction space.

These trajectories are effectively low-dimensional in prediction space, but we don't fully understand why.

ArXiv:2210.17011

github.com/grasp-lyrl/picture\_of\_space\_of\_tasks



