Picture of the space of typical learnable tasks

Rahul Ramesh ${ }^{\dagger}$, Jialin Mao ${ }^{\dagger}$, Itay Griniasty ${ }^{\S}$, Han Kheng Teoh ${ }^{\S}$, Rubing Yang ${ }^{\dagger}$,
Mark K. Transtrum ${ }^{\boldsymbol{\pi}}$, James P. Sethna ${ }^{\S}$, Pratik Chaudhari ${ }^{\dagger}$

${ }^{\dagger}$ University of Pennsylvania, ${ }^{\S}$ Cornell University, ${ }^{\text {T}}$ Brigham Young University

BYU

BRIGHAM YOUNG UNIVERSITY

Motivation

Motivation

Why are neural networks able to find representations that capture the shared structure in data?

Prediction Space

We analyze the training trajectories of neural networks in prediction space.

Prediction Space

We analyze the training trajectories of neural networks in prediction space.

Consider a neural network with weights w and inputs $\left\{x_{i}\right\}_{i=1}^{N}$. The predictions

$$
P_{w}=\left(\begin{array}{cccc}
p_{w}\left(y=1 \mid x_{1}\right) & p_{w}\left(y=2 \mid x_{1}\right) & \cdots & p_{w}\left(y=C \mid x_{1}\right) \\
p_{w}\left(y=1 \mid x_{2}\right) & p_{w}\left(y=2 \mid x_{2}\right) & \cdots & p_{w}\left(y=C \mid x_{2}\right) \\
\vdots & \vdots & \vdots & \vdots \\
p_{w}\left(y=1 \mid x_{N}\right) & p_{w}\left(y=2 \mid x_{N}\right) & \cdots & p_{w}\left(y=C \mid x_{N}\right)
\end{array}\right)
$$

is an $N \times C$ dimensional object.

Trajectories in Prediction Space

We convert training trajectories in weight space

$$
\left(w_{1}, w_{2}, \cdots, w_{T}\right)
$$

into trajectories in prediction space

$$
\left(P_{w_{1}}, P_{w_{2}}, \cdots, P_{w_{T}}\right) .
$$

Trajectories in Prediction Space

We convert training trajectories in weight space

$$
\left(w_{1}, w_{2}, \cdots, w_{T}\right)
$$

into trajectories in prediction space

$$
\left(P_{w_{1}}, P_{w_{2}}, \cdots, P_{w_{T}}\right) .
$$

InPCA reveals that the training trajectories are effectively low-dimensional in prediction space.

Information Geometry

We use tools from information geometry to study the prediction space.

Probabilistic model P_{w} is a point on a statistical manifold with the metric being the Fisher information metric.

Information Geometry

We use tools from information geometry to study the prediction space.

Probabilistic model P_{w} is a point on a statistical manifold with the metric being the Fisher information metric.

We consider

$$
\sqrt{P_{w}}=\left(\begin{array}{cccc}
\sqrt{p_{w}\left(y=1 \mid x_{1}\right)} & \sqrt{p_{w}\left(y=2 \mid x_{1}\right)} & \cdots & \sqrt{p_{w}\left(y=C \mid x_{1}\right)} \\
\sqrt{p_{w}\left(y=1 \mid x_{2}\right)} & \sqrt{p_{w}\left(y=2 \mid x_{2}\right)} & \cdots & \sqrt{p_{w}\left(y=C \mid x_{2}\right)} \\
\vdots & \vdots & \vdots & \vdots \\
\sqrt{p_{w}\left(y=1 \mid x_{i}\right)} & \sqrt{p_{w}\left(y=2 \mid x_{i}\right)} & \cdots & \sqrt{p_{w}\left(y=C \mid x_{i}\right)} \\
\vdots & \vdots & \vdots & \vdots \\
\sqrt{p_{w}\left(y=1 \mid x_{N}\right)} & \sqrt{p_{w}\left(y=2 \mid x_{N}\right)} & \cdots & \sqrt{p_{w}\left(y=C \mid x_{N}\right)}
\end{array}\right)
$$

and note that L2 norm of each row 1 .

Information Geometry

We think of $\sqrt{P_{w}}$ as a point on the product of N spheres.

Information Geometry

We think of $\sqrt{P_{w}}$ as a point on the product of N spheres.

The geodesic under the FIM is exactly the great circle distance, i.e.,

$$
\sqrt{P_{u, v}^{\lambda}}=\frac{\sin \left((1-\lambda) d_{G}\right)}{\sin \left(d_{G}\right)} \sqrt{P_{u}}+\frac{\sin \left(\lambda d_{G}\right)}{\sin \left(d_{G}\right)} \sqrt{P_{v}}, \quad \lambda \in[0,1] .
$$

Computational Info. Geometry

Equipped with these ideas, we study the trajectories with the following tools:

Computational Info. Geometry

Equipped with these ideas, we study the trajectories with the following tools:

Geometric progress
$t_{w}=\inf _{\lambda \in[0,1]} d_{G}\left(P_{w}, P_{0, *}^{\lambda}\right)$

$$
L=2 \int_{0}^{1} \sqrt{d_{B}\left(P_{w(t)}, P_{w(t+d t)}\right)}
$$

Comparing curves
$d_{\mathrm{traj}}\left(\tau_{u}, \tau_{v}\right)=\int_{0}^{1} d_{B}\left(P_{u(t)}, P_{v(t)}\right) \mathrm{d} t$

Results - Training on different tasks

Results - Self-supervised learning

Results - Episodic meta-learning

Conclusion

We develop tools to study the training trajectories of representations in prediction space.

Conclusion

We develop tools to study the training trajectories of representations in prediction space.

These trajectories are effectively low-dimensional in prediction space, but we don't fully understand why.

Conclusion

We develop tools to study the training trajectories of representations in prediction space.

These trajectories are effectively low-dimensional in prediction space, but we don't fully understand why.

ArXiv:2210.17011
github.com/grasp-lyrl/picture_of_space_of_tasks

