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Batch-wise Multivariate Change Detection
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𝑥 ∼ ቊ
𝜙0 if 𝑥 ∈ 𝑊𝑖 , 𝑖 ≤ 𝑇∗

𝜙1 if 𝑥 ∈ 𝑊𝑖 , 𝑖 > 𝑇∗

Fixed-size batches
𝑊 = 𝜈

Test statistic
𝒯: ℝ𝑑 𝜈 → ℝ

𝑊1 𝑊2 𝑊𝑇∗ 𝑊𝑇∗+1…

Change
Point
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𝑊1 𝑊2 𝑊𝑇∗ 𝑊𝑇∗+1…

Change
Point

𝒯 𝑊1 < 𝜏 → 𝑊1 ∼ 𝜙0

𝑥 ∼ ቊ
𝜙0 if 𝑥 ∈ 𝑊𝑖 , 𝑖 ≤ 𝑇∗
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𝒯: ℝ𝑑 𝜈 → ℝ
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𝑊1 𝑊2 𝑊𝑇∗ 𝑊𝑇∗+1…

Change
Point

𝒯 𝑊2 < 𝜏 → 𝑊2 ∼ 𝜙0

𝑥 ∼ ቊ
𝜙0 if 𝑥 ∈ 𝑊𝑖 , 𝑖 ≤ 𝑇∗
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𝑊1 𝑊2 𝑊𝑇∗ 𝑊𝑇∗+1…

Change
Point

𝒯 𝑊𝑇∗ ≥ 𝜏 → 𝑊𝑇∗ ∼ 𝜙1

𝑥 ∼ ቊ
𝜙0 if 𝑥 ∈ 𝑊𝑖 , 𝑖 ≤ 𝑇∗

𝜙1 if 𝑥 ∈ 𝑊𝑖 , 𝑖 > 𝑇∗

Fixed-size batches
𝑊 = 𝜈

Test statistic
𝒯: ℝ𝑑 𝜈 → ℝ
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Background: QuantTree [1]

Training:

• Construct histogram ℎ = 𝑆𝑘 , ො𝜋𝑘 𝑘=1
𝐾  over 

training set 𝑇𝑅 of 𝑁 samples

• Compute detection threshold 𝜏 = 𝜏 𝛼 by 

Monte Carlo simulations
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Inference:

• Compute bin counts 𝑦𝑘 = 𝑊 ∩ 𝑆𝑘 for all 𝑘

• Compute test statistic 𝒯 𝑊 = 𝒯 𝑦1, … , 𝑦𝐾

• Detect change when 𝒯 𝑊 > 𝜏

[1] Boracchi, Carrera, Cervellera, Macciò “QuantTree: histograms for 
change detection in multivariate data streams.”  ICML 2018
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Inference:

• Compute bin counts 𝑦𝑘 = 𝑊 ∩ 𝑆𝑘 for all 𝑘

• Compute test statistic 𝒯 𝑊 = 𝒯 𝑦1, … , 𝑦𝐾
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Background: QuantTree [1] [1] Boracchi, Carrera, Cervellera, Macciò “QuantTree: histograms for 
change detection in multivariate data streams.”  ICML 2018
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Pros and Cons of QuantTree

Practical monitoring
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Control of the False Positive Rate
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Limited to axis-aligned splits

Mostly bins of non-finite volume
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Pros and Cons of QuantTree

Practical monitoring
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Control of the False Positive Rate

Limited to axis-aligned splits

Mostly bins of non-finite volume

PCA not always beneficial to performance
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Kernel QuantTree
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Compact bins defined as sublevel sets of 
measurable kernel functions

Generalization of the theoretical
properties of QuantTree, enabling
control of the False Positive Rate

Independent of roto-translations, hence
does not require PCA preprocessing
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ራ

𝑗<𝐾−1

Kernel QuantTree: Histogram Construction
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𝑆1 = 𝑥 ∈ ℝ𝑑 ∣ 𝑓1 𝑥 ≤ 𝑞1

𝑆2 = 𝑥 ∈ ℝ𝑑 ∖ 𝑆1 ∣ 𝑓2 𝑥 ≤ 𝑞2

𝑆𝐾−1 = 𝑥 ∈ ℝ𝑑 ∖ 𝑆𝑗 ∣ 𝑓2 𝑥 ≤ 𝑞2

ℝ𝑑

𝑆𝐾 = ℝ𝑑 ∖ 𝑆1 ∪⋯𝑆𝐾−1

…

Measurable Kernel Functions

𝑞𝑘 ∈ ℝ
Split Values

𝑓𝑘:ℝ
𝑑 → ℝ
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Kernel QuantTree: Kernel Functions
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𝑓𝑘: ℝ
𝑑 → ℝ

𝑓𝑘 𝑥 = 𝑥 − 𝑐𝑘
𝑇 𝐴 𝑥 − 𝑐𝑘

Kernel matrix - Determines the resulting distance

Centroid – Determines the location of the bin

𝑓𝑘 𝑥 =
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Euclidean Distance

International Conference on Machine Learning (ICML) 2023

𝑓𝑘 𝑥 = 𝑥 − 𝑐𝑘
𝑇 𝑥 − 𝑐𝑘

𝐴 = 𝕀𝑑

Identity matrix 
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Mahalanobis Distance

International Conference on Machine Learning (ICML) 2023

𝑓𝑘 𝑥 = 𝑥 − 𝑐𝑘
𝑇Σ−1 𝑥 − 𝑐𝑘

𝐴 = Σ−1

Sample covariance matrix of 𝑇𝑅
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𝑓𝑘 𝑥 = 𝑥 − 𝑐𝑘
𝑇𝐴 𝑥 𝑥 − 𝑐𝑘

𝐴 𝑥 =
Σ𝑚=1
𝑀 𝜌𝑚 ⋅ 𝑖𝑚 𝑥, 𝑐𝑘 ⋅ 𝐶𝑚

−1

Σ𝑚=1
𝑀 𝜌𝑚 ⋅ 𝑖𝑚 𝑥, 𝑐𝑘

Weighted average of covariance matrices 
𝐶𝑚  from a Gaussian Mixture Model fitted 

to 𝑇𝑅

Weighted Mahalanobis Distance [2]
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[2] Tipping "Deriving cluster analytic distance functions from 
gaussian mixture models." ICANN 1999
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Performance-Complexity Tradeoff
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Euclidean
Distance

Mahalanobis
Distance

Weighted Mahalanobis
Distance

Detection Performance

Computational Complexity
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Theoretical Results – Independence Theorem
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Theorem 1. Let ℎ = 𝑆𝑘 , ො𝜋𝑘 𝑘=1
𝐾  be a KQT histogram constructed using 

measurable functions 𝑓𝑘:ℝ
𝑑 → ℝ. Let 𝒯ℎ  be a statistic defined over 

batches 𝑊 depending only on the number 𝑦𝑘  of samples of 𝑊 falling in 
the bins of ℎ. Then, the distribution of 𝒯ℎ  over stationary batches 𝑊 ∼ 𝜙0 
depends only on the 𝜈, 𝑁 = 𝑇𝑅  and target probabilities 𝜋𝑘 𝑘.

• Enables computing detection thresholds by Monte Carlo simulations

• Thresholds are independent of 𝜙0 or its dimension 𝑑, no bootstrap or 
training date are required.

• Thresholds can be set to control the False Positive Rate
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Theoretical Results – Roto-translational Invariance
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Theorem 2. Let 𝛷:ℝ𝑑 → ℝ𝑑  be a roto-translation. Let ℎ = 𝑆𝑘 , ො𝜋𝑘  and 
ℎ′ = 𝑆𝑘

′ , ො𝜋𝑘
′  be the KQT histograms constructed from the training sets 

𝑇𝑅 ⊂ ℝ𝑑 and 𝑇𝑅′ = 𝛷 𝑇𝑅 , where the kernel function is either the 
Euclidean, Mahalanobis or Weighted Mahalanobis distance. Then, we have 
that 𝑆𝑘

′ = 𝛷 𝑆𝑘  and ො𝜋𝑘
′ = ො𝜋𝑘 for 𝑘 = 1,… ,𝐾. In particular, for any batch 

𝑊, if we compute 𝑊′ = 𝛷 𝑊 , we have that 𝒯ℎ 𝑊 = 𝒯ℎ′ 𝑊
′ .

• No PCA preprocessing is required
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Experimental Validation
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𝑑

QT
(w/o PCA)

QT
(w/ PCA)

KQT
Euclidean

KQT
Mahalanobis

KQT
Weighted

Mahalanobis
EIkM [3]

SPLL [4]
(w/ PCA)

Unimodal 4 4,83%/0,95 4,81%/0,97 4,86%/0,94 4,82%/0,99 4,83%/0,99 4,82%/0,87 5,92%/0,98

Bimodal 4 4,80%/0,90 4,81%/0,93 4,80%/0,90 4,81%/0,95 4,80%/0,96 4,82%/0,82 6,02%/0,89

Nino 5 5,04%/0,84 4,99%/0,90 5,00%/0,60 5,02%/0,90 5,01%/0,92 4,83%/0,52 7,69%/0,84

Protein 9 4,97%/0,89 4,98%/0,98 4,98%/0,61 4,98%/0,99 5,03%/0,99 4,88%/0,51 8,42%/0,95

Credit 28 4,84%/0,69 4,96%/0,86 4,89%/0,60 4,85%/0,78 5,06%/1,00 4,96%/0,50 16,06%/0,66

Insects 33 4,93%/0,99 4,91%/0,99 4,92%/1,00 4,96%/1,00 5,25%/1,00 4,96%/0,96 6,16%/1,00

Sensorless 48 4,84%/0,86 5,01%/1,00 4,82%/0,54 5,01%/1,00 7,42%/1,00 4,93%/0,50 4,83%/1,00

Particle 50 4,85%/0,88 4,87%/0,93 4,81%/0,55 4,94%/0,97 5,80%/0,99 4,84%/0,50 6,07%/0,90

Avg. Rank 5.24 4.93 7.08 3.82 2.98 9.37 5.34

[3] Liu, Lu, Zhang "Concept drift detection via equal intensity k-means 
space partitioning." IEEE ToCybernetics 2020.
[4] Kuncheva "Change detection in streaming multivariate data using 
likelihood detectors." IEEE TKDE 2011



Kernel QuantTree

High-Dimensional Data
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KQT (Mahalanobis) KQT (Weighted Mahalanobis)

𝑑 N=4096 N=16384 N=4096 N=16384

16 4.81% 4.89% 4.88% (99.5) 4.79% (67.7) U
n

im
o

d
a

l

32 4.95% 4.88% 4.99% (150.6) 4.81% (123.6)

64 5.80% 4.95% 5.81% (315.2) 4.87% (223.8)

128 16.52% 5.31% 77.74% (344.0) 5.45% (307.0)

16 4.88% 4.82% 4.88% (68.3) 4.87% (90.3) B
im

o
d

a
l

32 4.95% 4.86% 5.36% (177.2) 4.83% (120.4)

64 5.66% 4.86% 5.70% (253.9) 5.03% (220.3)

128 15.44% 5.32% 76.60% (276.9) 5.46% (244.7)
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Conclusion
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Generalization of the theoretical
properties of QuantTree, enabling
control of the False Positive Rate

Independent of roto-translations, hence
does not require PCA preprocessing

Compact bins defined as sublevel sets of 
measurable kernel functions

Very practical monitoring

State-of-the-art detection performance

Kernel QuantTree
(Weighted Mahalanobis)
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