Future-conditioned Unsupervised Pretraining for Decision Transformer

Zhihui Xie, Zichuan Lin, Deheng Ye, Qiang Fu, Wei Yang, Shuai Li

The Power of Pretraining

Ingredient 1: Internet-scale knowledge Ingredient 2: Open-ended objectives

Ingredient 3: Nets w/ weak inductive biases "Sparks of AGI"1

Does sequential

decision making enjoy this formula?

¹Sparks of Artificial General Intelligence: Early experiments with GPT-4 (Bubeck et al., 2023)

TL;DR

Unsupervised pretraining = generative modeling Supervised finetuning = controllable generation

From Supervised to Unsupervised Pretraining

- Offline RL as sequence modeling¹
 - Learning a policy $\pi_{\theta}(\cdot | \hat{\tau}_{1:t-1}, s_t, \hat{R}_t)$
 - Return-conditioned supervised learning (RCSL)
- Return-conditioned methods are good, but...
 - It cannot handle unsupervised pretraining
 - Scalar reward values can lead to inconsistent policies²

- Learning a **future-conditioned** policy $\pi_{\theta}(\cdot | \tau_{1:t-1}, s_t, \mathbf{z})$
- z encodes the future trajectory, without rewards!

$$(s_t, a_t) \to \hat{R}_t \qquad (s_t, a_t) \to \tau_{future} = (s_{t+1}, a_{t+1}, \dots, s_T, a_T) \to \hat{R}_t$$

¹Decision Transformer: Reinforcement Learning via Sequence Modeling (Chen et al., 2021) ²Dichotomy of Control: Separating What You Can Control from What You Cannot (Yang et al., 2022)

 $\hat{\tau}$: Reward-labeled trajectory τ : Reward-free trajectory

Our Proposed Approach: PDT

Training: Future Trajectory Encoding

Inference: Future Generation

Inference: Controllable Future Generation

Results on D4RL Datasets

٠

dataset	Mean	Min	Max	SAC	ACL	PDT-0	PDT	$\delta_{ m PDT}$	ODT-0	ODT	δ_{ODT}
hopper-m	44.32	10.33	99.63	24.22 ± 10.55	57.66 ± 6.23	53.74	95.26 ± 1.77	41.52	66.01	87.22 ± 6.85	21.22
hopper-m-r	14.98	0.58	98.73		51.68 ± 48.74	28.56	84.96 ± 5.49	56.40	74.36	75.31 ± 6.22	0.95
walker2d-m	62.09	-0.18	92.04	35.26 ± 23.51	60.21 ± 27.08	73.70	75.24 ± 4.60	1.53	72.80	72.62 ± 5.51	-0.18
walker2d-m-r	14.84	-1.13	89.97		87.54 ± 7.31	15.64	58.58 ± 14.78	42.94	73.27	70.54 ± 2.89	-2.73
halfcheetah-m	40.68	-0.24	45.02	57.05 ± 3.89	46.59 ± 2.71	42.86	37.93 ± 1.82	-4.93	42.69	35.07 ± 10.40	-7.62
halfcheetah-m-r	27.17	-2.89	42.41		50.56 ± 3.74	24.83	29.70 ± 4.97	4.88	40.95	35.60 ± 1.68	-5.35
ant-m	80.30	-4.85	107.31	33.30 ± 12.10	28.44 ± 10.78	93.86	89.10 ± 6.49	-4.77	93.08	73.80 ± 16.77	-19.28
ant-m-r	30.95	-8.87	96.56		9.53 ± 1.80	53.78	48.18 ± 9.59	-5.60	90.37	60.48 ± 6.23	-29.89
sum	315.33	-7.25	671.67		392.22	386.96	518.93	123.94	553.53	510.65	-42.87

- PDT can reuse pretrained behaviors for fast task adaptation
- PDT performs on par with its supervised pretraining counterpart

Analysis

Future conditioning: Different futures lead to different behaviors

Controllable generation: Binding rewards to futures

task	ODT	PDT
halfcheetah-forward-jump	87.27 ± 14.41	$83.80 \pm \scriptscriptstyle 2.28$
halfcheetah-jump	$\textbf{-31.00} \pm \textbf{49.08}$	$\textbf{70.39} \pm \textbf{16.56}$
walker2d-forward-jump	$29.36 \pm \textbf{4.55}$	$45.31 \pm \textbf{36.81}$
walker2d-jump	$15.81 \pm {\scriptstyle 14.75}$	$\textbf{68.70} \pm 2.90$
sum	101.45	268.21

Generalization performance

Takeaways

- RCSL can be easily retrofitted for unsupervised pretraining
 - \circ Target returns \rightarrow target future trajectories
 - \circ Downstream finetuning \rightarrow controllable generation
- Experimental results show that our proposed PDT
 - can extract diverse behaviors from unlabeled offline data
 - o can selectively high-return behaviors through online finetuning
- Open problems...
 - Better generative modeling?
 - Better strategy to fuse future information?

