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Motivation

Problem

I Equality-constrained optimization

min
x∈Rn

f(x) s.t. c(x) = 0,

- f : Rn → R, objective function.
- c : Rn → Rm, equality constraints.

I Large scale setting (n+m is large).

Example

I Constrained Logistic Regression

min
x∈Rn

1

N

N∑
i=1

log
(

1 + exp
(
−yi · dTi x

))
s.t. Ax = b, ‖x‖2 = 1,

I PDE-constrained Problem

min
x,y

1

2
‖x− u‖2

L2(Ω)
+
ζ

2
‖y‖2

L2(Ω)

s.t. −∆x = y in Ω, x = 0 on ∂Ω,



Motivation

Classical Newton method for constrained optimization

I L(x,λ) = f(x) + λT c(x) is the Lagrangian function.

I At each iteration k, we solve the Lagrangian Newton system to find a search
direction.

Γk∆zk = −∇Lk,

where Γk ∈ R(n+m)×(n+m) approximates the Lagrangian Hessian ∇2Lk.

I Problem: When n+m is large, finding the exact solution ∆zk is impractical.



Method

AdaSketch-Newton (Randomized Newton method for constrained optimization)

I We use exact augmented Lagrangian as the merit function.

I We use randomized iterative sketching for the Lagrangian Newton system.

I We adaptively control the accuracy of randomized solver and penalty parameters
of exact augmented Lagrangian.



Method

AdaSketch-Newton

I We use smooth exact augmented Lagrangian as the merit function

Lη(x,λ) = L(x,λ)︸ ︷︷ ︸
Lagrangian

+

penalty︷︸︸︷
η1

2
‖c(x)‖2︸ ︷︷ ︸

feasibility error

+

penalty︷︸︸︷
η2

2
‖∇xL(x,λ)‖2︸ ︷︷ ︸

optimality error

.

I Smoothness: to overcome the Maratos effect.

I Exactness: solution of min
x,λ
Lη(x,λ) is also the solution of the original

constrained problem provided that η are suitably specified.



Method

AdaSketch-Newton

I We update inexact Newton direction ∆̃zk by using sketch-and-project framework

∆̃zk,j+1 = arg min
u
‖u− ∆̃zk,j‖2, subject to ST

k,jΓk︸ ︷︷ ︸
d×(n+m)

u = −ST
k,j∇Lk︸ ︷︷ ︸
d×1

,

where Sk,j is a copy of random sketching matrix S ∈ R(n+m)×d ∼ P with d
being sketching dimension.



Method

AdaSketch-Newton

I We stop the sketching solver when the adaptive accuracy condition hold∥∥rk,j∥∥ ≤ θkδkC ‖∇Lk‖ .
I We check if ∆̃zk,j satisfies the descent direction condition

(∇Lkηk )T ∆̃zk,j ≤ −η2,k ‖∇Lk‖2 /2.

I If ∆̃zk,j is a descent direction, we accept it as a search direction and do line
search.

I If not, we update (η1,k, η2,k, δk) and go back to update ∆̃zk,j .



Main Results

Theoretical Guarantee



Experiments

I Problem: CUTEst test set

I Baseline:
- Algorithm 2-GMRES: Inexact Newton method with `1 penalized merit function
and GMRES
- Algorithm 3-GMRES: Adaptive modification of Algorithm 2
- Augmented Lagrangian (Nocedal & Wright, 2006, Algorithm 17.3)
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