High-dimensional Location Estimation via Norm Concentration for Subgamma Vectors

Shivam Gupta (UT Austin), Jasper C.H. Lee (UW Madison), Eric Price (UT Austin)

August 11, 2023

• Given *n* samples from a Gaussian with variance σ^2 , would like to estimate mean.

- Given *n* samples from a Gaussian with variance σ^2 , would like to estimate mean.
- The optimal estimator is the empirical mean, which has 1δ confidence radius $\sigma \sqrt{\frac{2\log \frac{1}{\delta}}{n}}$

- Given *n* samples from a Gaussian with variance σ^2 , would like to estimate mean.
- The optimal estimator is the empirical mean, which has 1δ confidence radius $\sigma \sqrt{\frac{2\log \frac{1}{\delta}}{n}}$

• For the Laplace distribution, the median achieves error $\sigma \sqrt{\frac{\log \frac{1}{\delta}}{n}}$, a factor $\sqrt{2}$ savings over the above

- Given *n* samples from a Gaussian with variance σ^2 , would like to estimate mean.
- The optimal estimator is the empirical mean, which has 1δ confidence radius $\sigma \sqrt{\frac{2\log \frac{1}{\delta}}{n}}$

• For the Laplace distribution, the median achieves error $\sigma \sqrt{\frac{\log \frac{1}{\delta}}{n}}$, a factor $\sqrt{2}$ savings over the above

Given a density f (up to shift) on \mathbb{R}^d , and n samples X_1, \ldots, X_n , what is the best estimator of the mean? **Mean Estimation with known density**.

First attempt

First attempt

• Fit samples to density: find mean that is most likely to have generated samples – aka Maximum Likelihood Estimation (MLE)

- Fit samples to density: find mean that is most likely to have generated samples aka Maximum Likelihood Estimation (MLE)
- Enjoys great properties asymptotically converges to $\mathcal{N}(\mu, \mathcal{I}^{-1}/n)$, where \mathcal{I} is the *Fisher Information*

- Fit samples to density: find mean that is most likely to have generated samples – aka Maximum Likelihood Estimation (MLE)
- Enjoys great properties asymptotically converges to $\mathcal{N}(\mu, \mathcal{I}^{-1}/n)$, where \mathcal{I} is the *Fisher Information*
- Basically tight: Cramér-Rao bound says any unbiased estimator must have variance at least \mathcal{I}^{-1}/n

• In 1-d, when density known, might expect $|\hat{\mu} - \mu| \le \sqrt{\frac{2\log \frac{2}{\delta}}{n\mathcal{I}}}$

- In 1-d, when density known, might expect $|\hat{\mu} \mu| \leq \sqrt{\frac{2\log \frac{2}{\delta}}{nT}}$
- Unfortunately, impossible!

- In 1-d, when density known, might expect $|\hat{\mu} \mu| \leq \sqrt{\frac{2\log \frac{2}{\delta}}{nT}}$
- Unfortunately, impossible!

• Solution: smoothing [Gupta, Lee, Price, Valiant, NeurIPS 2022] Smooth with a radius $r = \sigma/n^{1/6}$ Gaussian, then run MLE. With probability $1 - \delta$,

$$|\hat{\mu}-\mu| \leq \sqrt{rac{2\lograc{2}{\delta}}{n\mathcal{I}_r}}(1+o(1))$$

- In 1-d, when density known, might expect $|\hat{\mu} \mu| \leq \sqrt{\frac{2\log \frac{2}{\delta}}{nT}}$
- Unfortunately, impossible!

• Solution: smoothing [Gupta, Lee, Price, Valiant, NeurIPS 2022] Smooth with a radius $r = \sigma/n^{1/6}$ Gaussian, then run MLE. With probability $1 - \delta$,

$$|\hat{\mu}-\mu| \leq \sqrt{rac{2\lograc{2}{\delta}}{n\mathcal{I}_r}}(1+o(1))$$

- 1. A new algorithm for 1d location estimation.
 - Faster: one step of Newton's method rather than full MLE
 - More accurate: Smaller o(1) term, particularly for constant δ .

- 1. A new algorithm for 1d location estimation.
 - Faster: one step of Newton's method rather than full MLE
 - More accurate: Smaller o(1) term, particularly for constant δ .
- 2. An extension to high dimensions.
 - Possible because of simplified algorithm
 - Bound matches Gaussian tail bound for large effective dimension

Theorem (Informal)

Let $R = r^2 I_d$ and let \mathcal{I}_R be the *R*-smoothed Fisher information. For large enough *r* decaying polynomially in *n*, and any constant $0 < \eta < 1$

$$\|\hat{\mu}-\mu\|\leq (1+\eta)\sqrt{rac{\mathsf{Tr}(\mathcal{I}_R^{-1})}{n}}+5\sqrt{rac{\|\mathcal{I}_R^{-1}\|\lograc{4}{\delta}}{n}}$$

Theorem (Informal)

Let $R = r^2 I_d$ and let \mathcal{I}_R be the *R*-smoothed Fisher information. For large enough *r* decaying polynomially in *n*, and any constant $0 < \eta < 1$

$$\|\hat{\mu}-\mu\| \leq (1+\eta)\sqrt{rac{\mathsf{Tr}(\mathcal{I}_R^{-1})}{n}} + 5\sqrt{rac{\|\mathcal{I}_R^{-1}\|\lograc{4}{\delta}}{n}}$$

 Based on new theorem for concentration of norm of vectors with subgamma projections

- 1. Gaussian Smoothing + MLE \rightarrow Finite sample bound for mean estimation with known density in one dimension
- 2. Gaussian Smoothing + single step of Newton's method on gradient of log-likelihood
 - Faster and more accurate
 - Finite sample bound in high dimensions

Contact: shivamgupta@utexas.edu