Tutorial: Deep Reinforcement Learning

David Silver, Google DeepMind
Outline

Introduction to Deep Learning

Introduction to Reinforcement Learning

Value-Based Deep RL

Policy-Based Deep RL

Model-Based Deep RL
Reinforcement Learning in a nutshell

RL is a general-purpose framework for decision-making

- RL is for an agent with the capacity to act
- Each action influences the agent’s future state
- Success is measured by a scalar reward signal
- Goal: select actions to maximise future reward
Deep Learning in a nutshell

DL is a general-purpose framework for representation learning

- Given an **objective**
- Learn **representation** that is required to achieve objective
- Directly from **raw inputs**
- Using minimal domain knowledge
Deep Reinforcement Learning: $AI = RL + DL$

We seek a single agent which can solve any human-level task

- RL defines the objective
- DL gives the mechanism
- $RL + DL = \text{general intelligence}$
Examples of Deep RL @DeepMind

- **Play** games: Atari, poker, Go, ...
- **Explore** worlds: 3D worlds, Labyrinth, ...
- **Control** physical systems: manipulate, walk, swim, ...
- **Interact** with users: recommend, optimise, personalise, ...
Outline

Introduction to Deep Learning

Introduction to Reinforcement Learning

Value-Based Deep RL

Policy-Based Deep RL

Model-Based Deep RL
Deep Representations

- A deep representation is a composition of many functions

\[x \rightarrow h_1 \rightarrow \ldots \rightarrow h_n \rightarrow y \rightarrow l \]

- Its gradient can be backpropagated by the chain rule
Deep Neural Network

A deep neural network is typically composed of:

- **Linear transformations**
 \[h_{k+1} = Wh_k \]

- **Non-linear activation functions**
 \[h_{k+2} = f(h_{k+1}) \]

- **A loss function on the output**, e.g.
 - Mean-squared error \(l = \|y^* - y\|^2 \)
 - Log likelihood \(l = \log \mathbb{P}[y^*] \)
Training Neural Networks by Stochastic Gradient Descent

- Sample gradient of expected loss $L(w) = \mathbb{E}[l]$

$$\frac{\partial l}{\partial w} \sim \mathbb{E} \left[\frac{\partial l}{\partial w} \right] = \frac{\partial L(w)}{\partial w}$$

- Adjust w down the sampled gradient

$$\Delta w \propto \frac{\partial l}{\partial w}$$
Weight Sharing

Recurrent neural network shares weights between time-steps

Convolutional neural network shares weights between local regions
Outline

Introduction to Deep Learning

Introduction to Reinforcement Learning

Value-Based Deep RL

Policy-Based Deep RL

Model-Based Deep RL
Many Faces of Reinforcement Learning
Agent and Environment

At each step t the agent:
- Executes action a_t
- Receives observation o_t
- Receives scalar reward r_t

The environment:
- Receives action a_t
- Emits observation o_{t+1}
- Emits scalar reward r_{t+1}
State

- Experience is a sequence of observations, actions, rewards

 \[o_1, r_1, a_1, \ldots, a_{t-1}, o_t, r_t \]

- The state is a summary of experience

 \[s_t = f(o_1, r_1, a_1, \ldots, a_{t-1}, o_t, r_t) \]

- In a fully observed environment

 \[s_t = f(o_t) \]
Major Components of an RL Agent

- An RL agent may include one or more of these components:
 - **Policy**: agent’s behaviour function
 - **Value function**: how good is each state and/or action
 - **Model**: agent’s representation of the environment
A policy is the agent's behaviour. It is a map from state to action:

- Deterministic policy: $a = \pi(s)$
- Stochastic policy: $\pi(a|s) = \mathbb{P}[a|s]$
Value Function

- A value function is a prediction of future reward
 - “How much reward will I get from action a in state s?”
- Q-value function gives expected total reward
 - from state s and action a
 - under policy π
 - with discount factor γ

\[
Q^\pi(s, a) = \mathbb{E} \left[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \ldots \mid s, a \right]
\]
A value function is a prediction of future reward

“How much reward will I get from action \(a \) in state \(s \)?”

\(Q \)-value function gives expected total reward

- from state \(s \) and action \(a \)
- under policy \(\pi \)
- with discount factor \(\gamma \)

\[
Q^\pi(s, a) = \mathbb{E} \left[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \ldots \mid s, a \right]
\]

Value functions decompose into a Bellman equation

\[
Q^\pi(s, a) = \mathbb{E}_{s', a'} \left[r + \gamma Q^\pi(s', a') \mid s, a \right]
\]
Optimal Value Functions

- An optimal value function is the maximum achievable value

\[Q^*(s, a) = \max_{\pi} Q^\pi(s, a) = Q^{\pi^*}(s, a) \]
Optimal Value Functions

- An optimal value function is the maximum achievable value

\[Q^*(s, a) = \max_{\pi} Q^\pi(s, a) = Q^{\pi^*}(s, a) \]

- Once we have \(Q^* \) we can act optimally,

\[\pi^*(s) = \arg\max_a Q^*(s, a) \]
Optimal Value Functions

- An optimal value function is the maximum achievable value
 \[Q^*(s, a) = \max_{\pi} Q^\pi(s, a) = Q^{\pi^*}(s, a) \]

- Once we have \(Q^* \) we can act optimally,
 \[\pi^*(s) = \arg\max_a Q^*(s, a) \]

- Optimal value maximises over all decisions. Informally:
 \[Q^*(s, a) = r_{t+1} + \gamma \max_{a_{t+1}} r_{t+2} + \gamma^2 \max_{a_{t+2}} r_{t+3} + \ldots \]
 \[= r_{t+1} + \gamma \max_{a_{t+1}} Q^*(s_{t+1}, a_{t+1}) \]
Optimal Value Functions

- An optimal value function is the maximum achievable value

\[Q^*(s, a) = \max_\pi Q^\pi(s, a) = Q^{\pi^*}(s, a) \]

- Once we have \(Q^* \) we can act optimally,

\[\pi^*(s) = \arg\max_a Q^*(s, a) \]

- Optimal value maximises over all decisions. Informally:

\[
Q^*(s, a) = r_{t+1} + \gamma \max_{a_{t+1}} r_{t+2} + \gamma^2 \max_{a_{t+2}} r_{t+3} + ... \\
= r_{t+1} + \gamma \max_{a_{t+1}} Q^*(s_{t+1}, a_{t+1})
\]

- Formally, optimal values decompose into a Bellman equation

\[
Q^*(s, a) = \mathbb{E}_{s'} \left[r + \gamma \max_{a'} Q^*(s', a') \mid s, a \right]
\]
Value Function Demo
Model

observation o_t

reward r_t

action a_t
Model

- Model is learnt from experience
- Acts as proxy for environment
- Planner interacts with model
- e.g. using lookahead search
Approaches To Reinforcement Learning

Value-based RL
- Estimate the optimal value function $Q^*(s, a)$
- This is the maximum value achievable under any policy

Policy-based RL
- Search directly for the optimal policy π^*
- This is the policy achieving maximum future reward

Model-based RL
- Build a model of the environment
- Plan (e.g. by lookahead) using model
Deep Reinforcement Learning

- Use deep neural networks to represent
 - Value function
 - Policy
 - Model
- Optimise loss function by stochastic gradient descent
Outline

Introduction to Deep Learning

Introduction to Reinforcement Learning

Value-Based Deep RL

Policy-Based Deep RL

Model-Based Deep RL
Q-Networks

Represent value function by Q-network with weights \mathbf{w}

$$Q(s, a, \mathbf{w}) \approx Q^*(s, a)$$
Q-Learning

- Optimal Q-values should obey Bellman equation

\[Q^*(s, a) = \mathbb{E}_{s'} \left[r + \gamma \max_{a'} Q(s', a')^* \mid s, a \right] \]

- Treat right-hand side \(r + \gamma \max_{a'} Q(s', a', w) \) as a target

- Minimise MSE loss by stochastic gradient descent

\[l = \left(r + \gamma \max_a Q(s', a', w) - Q(s, a, w) \right)^2 \]
Q-Learning

- Optimal Q-values should obey Bellman equation

\[Q^*(s, a) = \mathbb{E}_{s'} \left[r + \gamma \max_{a'} Q(s', a')^* | s, a \right] \]

- Treat right-hand side \(r + \gamma \max_{a'} Q(s', a', \mathbf{w}) \) as a target
- Minimise MSE loss by stochastic gradient descent

\[l = \left(r + \gamma \max_{a'} Q(s', a', \mathbf{w}) - Q(s, a, \mathbf{w}) \right)^2 \]

- Converges to \(Q^* \) using table lookup representation

- But diverges using neural networks due to:
 - Correlations between samples
 - Non-stationary targets
Q-Learning

- Optimal Q-values should obey Bellman equation
 \[Q^*(s, a) = E_{s'} \left[r + \gamma \max_{a'} Q(s', a')^* \mid s, a \right] \]

- Treat right-hand side \(r + \gamma \max_{a'} Q(s', a', w) \) as a target

- Minimise MSE loss by stochastic gradient descent
 \[l = \left(r + \gamma \max_{a} Q(s', a', w) - Q(s, a, w) \right)^2 \]

- Converges to \(Q^* \) using table lookup representation
- But diverges using neural networks due to:
 - Correlations between samples
 - Non-stationary targets
Deep Q-Networks (DQN): Experience Replay

To remove correlations, build data-set from agent’s own experience

\[
\begin{array}{c|c}
 s_1, a_1, r_2, s_2 \\
 s_2, a_2, r_3, s_3 \\
 s_3, a_3, r_4, s_4 \\
 \vdots \\
 s_t, a_t, r_{t+1}, s_{t+1} \\
\end{array}
\rightarrow \begin{array}{c}
 s, a, r, s' \\
 s_t, a_t, r_{t+1}, s_{t+1} \\
\end{array}
\]

Sample experiences from data-set and apply update

\[
I = \left(r + \gamma \max_{a'} Q(s', a', w^-) - Q(s, a, w) \right)^2
\]

To deal with non-stationarity, target parameters \(w^-\) are held fixed
Deep Reinforcement Learning in Atari

state

reward

action

1660 8280

1660
DQN in Atari

- End-to-end learning of values $Q(s, a)$ from pixels s
- Input state s is stack of raw pixels from last 4 frames
- Output is $Q(s, a)$ for 18 joystick/button positions
- Reward is change in score for that step

Network architecture and hyperparameters fixed across all games
DQN Results in Atari
DQN Atari Demo

DQN paper
www.nature.com/articles/nature14236

DQN source code:
sites.google.com/a/deepmind.com/dqn/
Improvements since Nature DQN

- **Double DQN**: Remove upward bias caused by $\max_a Q(s, a, w)$
 - Current Q-network w is used to select actions
 - Older Q-network w^- is used to evaluate actions

$$l = \left(r + \gamma Q(s', \arg\max_{a'} Q(s', a', w), w^-) - Q(s, a, w) \right)^2$$
Improvements since Nature DQN

- **Double DQN**: Remove upward bias caused by \(\max_a Q(s, a, w) \)
 - Current Q-network \(w \) is used to select actions
 - Older Q-network \(w^- \) is used to evaluate actions

\[
L = \left(r + \gamma Q(s', \arg\max_{a'} Q(s', a', w), w^-) - Q(s, a, w) \right)^2
\]

- **Prioritised replay**: Weight experience according to surprise
 - Store experience in priority queue according to DQN error

\[
| r + \gamma \max_{a'} Q(s', a', w^-) - Q(s, a, w) |
\]
Improvements since Nature DQN

- **Double DQN**: Remove upward bias caused by $\max_a Q(s, a, w)$
 - Current Q-network w is used to select actions
 - Older Q-network w^- is used to evaluate actions

 $$l = \left(r + \gamma Q(s', \text{argmax}_{a'} Q(s', a', w), w^-) - Q(s, a, w) \right)^2$$

- **Prioritised replay**: Weight experience according to surprise
 - Store experience in priority queue according to DQN error

 $$\left| r + \gamma \max_{a'} Q(s', a', w^-) - Q(s, a, w) \right|$$

- **Dueling network**: Split Q-network into two channels
 - Action-independent value function $V(s, v)$
 - Action-dependent advantage function $A(s, a, w)$

 $$Q(s, a) = V(s, v) + A(s, a, w)$$
Improvements since Nature DQN

- **Double DQN:** Remove upward bias caused by $\max_a Q(s, a, w)$
 - Current Q-network w is used to select actions
 - Older Q-network w^- is used to evaluate actions

$$l = \left(r + \gamma Q(s', \text{argmax}_a Q(s', a', w), w^-) - Q(s, a, w) \right)^2$$

- **Prioritised replay:** Weight experience according to surprise
 - Store experience in priority queue according to DQN error

$$\left| r + \gamma \max_{a'} Q(s', a', w^-) - Q(s, a, w) \right|$$

- **Dueling network:** Split Q-network into two channels
 - Action-independent value function $V(s, v)$
 - Action-dependent advantage function $A(s, a, w)$

$$Q(s, a) = V(s, v) + A(s, a, w)$$

Combined algorithm: 3x mean Atari score vs Nature DQN
Gorila (General Reinforcement Learning Architecture)

- 10x faster than Nature DQN on 38 out of 49 Atari games
- Applied to recommender systems within Google
Asynchronous Reinforcement Learning

- Exploits multithreading of standard CPU
- Execute many instances of agent in parallel
- Network parameters shared between threads
- Parallelism decorrelates data
 - Viable alternative to experience replay
- Similar speedup to Gorila - on a single machine!
Outline

Introduction to Deep Learning

Introduction to Reinforcement Learning

Value-Based Deep RL

Policy-Based Deep RL

Model-Based Deep RL
Deep Policy Networks

- Represent policy by deep network with weights \(u \)

\[
a = \pi(a|s, u) \text{ or } a = \pi(s, u)
\]

- Define objective function as total discounted reward

\[
L(u) = \mathbb{E} \left[r_1 + \gamma r_2 + \gamma^2 r_3 + \ldots \mid \pi(\cdot, u) \right]
\]

- Optimise objective end-to-end by SGD
- i.e. Adjust policy parameters \(u \) to achieve more reward
Policy Gradients

How to make high-value actions more likely:

- The gradient of a stochastic policy \(\pi(a|s, u) \) is given by

\[
\frac{\partial L(u)}{\partial u} = \mathbb{E} \left[\frac{\partial \log \pi(a|s, u)}{\partial u} Q^\pi(s, a) \right]
\]

- The gradient of a deterministic policy \(a = \pi(s) \) is given by

\[
\frac{\partial L(u)}{\partial u} = \mathbb{E} \left[\frac{\partial Q^\pi(s, a)}{\partial a} \right]
\]
Policy Gradients

How to make high-value actions more likely:

- The gradient of a stochastic policy $\pi(a|s, u)$ is given by

$$\frac{\partial L(u)}{\partial u} = \mathbb{E} \left[\frac{\partial \log \pi(a|s, u)}{\partial u} Q^\pi(s, a) \right]$$

- The gradient of a deterministic policy $a = \pi(s)$ is given by

$$\frac{\partial L(u)}{\partial u} = \mathbb{E} \left[\frac{\partial Q^\pi(s, a)}{\partial a} \frac{\partial a}{\partial u} \right]$$

- if a is continuous and Q is differentiable
Actor-Critic Algorithm

- Estimate value function \(Q(s, a, w) \approx Q^\pi(s, a) \)
- Update policy parameters \(u \) by stochastic gradient ascent

\[
\frac{\partial l}{\partial u} = \frac{\partial \log \pi(a|s, u)}{\partial u} Q(s, a, w)
\]

or

\[
\frac{\partial l}{\partial u} = \frac{\partial Q(s, a, w)}{\partial a} \frac{\partial a}{\partial u}
\]
Asynchronous Advantage Actor-Critic (A3C)

- Estimate state-value function
 \[V(s, v) \approx \mathbb{E} [r_{t+1} + \gamma r_{t+2} + ... | s] \]

- Q-value estimated by an \(n \)-step sample
 \[q_t = r_{t+1} + \gamma r_{t+2} \ldots + \gamma^{n-1} r_{t+n} + \gamma^n V(s_{t+n}, v) \]
Asynchronous Advantage Actor-Critic (A3C)

- Estimate state-value function
 \[V(s, v) \approx \mathbb{E} \left[r_{t+1} + \gamma r_{t+2} + \ldots \mid s \right] \]

- Q-value estimated by an \(n \)-step sample
 \[q_t = r_{t+1} + \gamma r_{t+2} \ldots + \gamma^{n-1} r_{t+n} + \gamma^n V(s_{t+n}, v) \]

- Actor is updated towards target
 \[\frac{\partial l_u}{\partial u} = \frac{\partial \log \pi(a_t \mid s_t, u)}{\partial u} (q_t - V(s_t, v)) \]

- Critic is updated to minimise MSE w.r.t. target
 \[l_v = (q_t - V(s_t, v))^2 \]
Asynchronous Advantage Actor-Critic (A3C)

- Estimate state-value function

\[V(s, v) \approx \mathbb{E} [r_{t+1} + \gamma r_{t+2} + \ldots | s] \]

- Q-value estimated by an \(n \)-step sample

\[q_t = r_{t+1} + \gamma r_{t+2} \ldots + \gamma^{n-1} r_{t+n} + \gamma^n V(s_{t+n}, v) \]

- Actor is updated towards target

\[\frac{\partial l_u}{\partial u} = \frac{\partial \log \pi(a_t|s_t, u)}{\partial u} (q_t - V(s_t, v)) \]

- Critic is updated to minimise MSE w.r.t. target

\[l_v = (q_t - V(s_t, v))^2 \]

- 4x mean Atari score vs Nature DQN
Deep Reinforcement Learning in Labyrinth
A3C in Labyrinth

- End-to-end learning of softmax policy $\pi(a|s_t)$ from pixels
- Observations o_t are raw pixels from current frame
- State $s_t = f(o_1, \ldots, o_t)$ is a recurrent neural network (LSTM)
- Outputs both value $V(s)$ and softmax over actions $\pi(a|s)$
- Task is to collect apples (+1 reward) and escape (+10 reward)
A3C Labyrinth Demo

Demo:
www.youtube.com/watch?v=nMR5mjCFZCw&feature=youtu.be

Labyrinth source code (coming soon):
sites.google.com/a/deepmind.com/labyrinth/
How can we deal with high-dimensional continuous action spaces?

- Can’t easily compute $\max_a Q(s, a)$
 - Actor-critic algorithms learn without max
- Q-values are differentiable w.r.t a
 - Deterministic policy gradients exploit knowledge of $\frac{\partial Q}{\partial a}$
Deep DPG

DPG is the continuous analogue of DQN

- **Experience replay**: build data-set from agent’s experience
- **Critic** estimates value of current policy by DQN

\[
l_w = \left(r + \gamma Q(s', \pi(s', u^-), w^-) - Q(s, a, w) \right)^2
\]

To deal with non-stationarity, targets u^-, w^- are held fixed

- **Actor** updates policy in direction that improves Q

\[
\frac{\partial l_u}{\partial u} = \frac{\partial Q(s, a, w)}{\partial a} \frac{\partial a}{\partial u}
\]

- In other words critic provides loss function for actor
DPG in Simulated Physics

- Physics domains are simulated in MuJoCo
- End-to-end learning of control policy from raw pixels s
- Input state s is stack of raw pixels from last 4 frames
- Two separate convnets are used for Q and π
- Policy π is adjusted in direction that most improves Q
Demo: DPG from pixels
A3C in Simulated Physics Demo

- Asynchronous RL is viable alternative to experience replay
- Train a hierarchical, recurrent locomotion controller
- Retrain controller on more challenging tasks
Can deep RL find Nash equilibria in multi-agent games?

- Q-network learns “best response” to opponent policies
 - By applying DQN with experience replay
 - c.f. fictitious play
- Policy network $\pi(a|s, u)$ learns an average of best responses
 $$\frac{\partial l}{\partial u} = \frac{\partial \log \pi(a|s, u)}{\partial u}$$
- Actions a sample mix of policy network and best response
Neural FSP in Texas Hold’em Poker

- Heads-up limit Texas Hold’em
- NFSP with raw inputs only (no prior knowledge of Poker)
- vs SmooCT (3x medal winner 2015, handcrafted knowledge)

![Graph showing win rates of NFSP against SmooCT](image)

- NFSP's best response, greedy-average, and average strategy profiles exhibit a stable and relatively monotonic performance improvement, and achieve win rates of around -20 mbb/h against SmooCT from symmetric play for 25000 hands each. Figure 2a presents the learning performance of NFSP's main, average strategy profile we also evaluated the best response and greedy-average strategies, which deterministically choose actions that maximize the predicted action values or probabilities respectively.

- To provide some intuition for win rates in heads-up LHE, a player that always folds will lose 750 mbb/h between themselves. While training, we periodically evaluated NFSP's performance against SmooCT from symmetric play for 25000 hands each. Figure 2a presents the learning performance of NFSP's main, average strategy profile we also evaluated the best response and greedy-average strategies, which deterministically choose actions that maximize the predicted action values or probabilities respectively.

- We used vanilla SGD without momentum for both reinforcement and supervised learning, with learning rates set to 10^{-4} for the network parameters and 10^{-2} for the anticipatory parameter respectively. Each agent performed 256 steps in the game. The target network was refitted every 512 steps in the game. The memory sizes were set to 512 neurons with rectified linear activations. The memory sizes were set to 512 neurons with rectified linear activations. The memory sizes were set to 512 neurons with rectified linear activations. The memory sizes were set to 512 neurons with rectified linear activations.
Outline

Introduction to Deep Learning

Introduction to Reinforcement Learning

Value-Based Deep RL

Policy-Based Deep RL

Model-Based Deep RL
Learning Models of the Environment

- Demo: generative model of Atari
- Challenging to plan due to compounding errors
 - Errors in the transition model compound over the trajectory
 - Planning trajectories differ from executed trajectories
 - At end of long, unusual trajectory, rewards are totally wrong
Deep Reinforcement Learning in Go

What if we have a perfect model? e.g. game rules are known

AlphaGo paper:
www.nature.com/articles/nature16961

AlphaGo resources:
deepmind.com/alphago/
Conclusion

- General, stable and scalable RL is now possible
- Using deep networks to represent value, policy, model
- Successful in Atari, Labyrinth, Physics, Poker, Go
- Using a variety of deep RL paradigms