

RCD SCD RCDM Shotgun UCDC RCDC PCDM SDCA RCD mSDCA ICD ASDCA RBCD ACDM Acc-Prox-SDCA SPCDM Hydra Nsync AsySCD RCM APPROX DisDCA I-Prox-SDCA Asy-SPCD DBCD Hydra² DBCD APCG SPDC CoCoA Quartz S2CD ALPHA SDNA CoCoA+ AdaSDCA dfSDCA

Modern Convex Optimization Methods for Large-scale Empirical Risk Minimization (Part II: Dual Methods)

International Conference on Machine Learning July 2015

SDN/

Peter Richtárik and Mark Schmidt

Introduction

EMPIRICAL RISK MINIMIZATION

Primal Problem: ERM

Is the difficulty in *n* or *d*?

• Big n

- Work in the **primal**
- Process one loss function (= one example) at a time
- Type of methods: stochastic gradient descent (modern variants: SAG, SVRG, S2GD, mS2GD, SAGA, S2CD, MISO, FINITO, ...)

• Big d

- Work in the **primal**
- Process one primal variable at a time
- Type of methods: randomized coordinate descent (e.g., Hydra, Hydra2)

• Big n

- Work in the dual
- Process one dual variable (=one example) at a time
- Type of methods: randomized coordinate descent (modern variants: RCDM, PCDM, Shotgun, SDCA, APPROX, Quartz, ALPHA, SDNA, SPDC, ASDCA, ...)
- E.g. SDCA = run coordinate descent on the dual problem

Dual Problem

$$D(\alpha) \equiv -\lambda g^* \left(\frac{1}{\lambda n} \sum_{i=1}^n A_i \alpha_i \right) - \frac{1}{n} \sum_{i=1}^n \phi_i^* (-\alpha_i)$$

$$f = \max_{w \in \mathbb{R}^d} \{ (w')^\top w - g(w) \} \qquad \phi_i^* (a') = \max_{a \in \mathbb{R}^m} \{ (a')^\top a - \phi_i(a) \}$$

$$\max_{\substack{\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^N = \mathbb{R}^{nm}}} D(\alpha)$$

$$\in \mathbb{R}^m \in \mathbb{R}^m$$

 g^*

RANDOMIZED COORDINATE DESCENT

Coordinate Descent in 2D

Contours of a function

 $F: \mathbf{R}^2 \to \mathbf{R}$

BIBLIOGRAPHY (Randomized Coordinate Descent)

Citation	Algorithm	Paper
[Leventhal & Lewis 08]	RCD	Randomized methods for linear constraints: convergence rates and conditioning. Mathematics of OR 35(3), 641-654, 2010 (arXiv:0806.3015)
[S-Shwartz & Tewari 09]	SCD	Stochastic methods for L1-regularized loss minimization. ICML 2009
[Nesterov 10]	UCDM, RCDM, ACDM	Efficiency of coordinate descent methods on huge-scale optimization problems. <i>SIAM J. on Optimization</i> , 22(2):341–362, 2012 (CORE Discussion Paper 2010/2)
[Bradley et al 11]	Shotgun	Parallel coordinate descent for L1-regularized loss minimization . <i>ICML</i> , 2011 (arXiv: 1105.5379)
[R & Takáč 11a]	SCD	Efficient serial and parallel coordinate descent methods for huge-scale truss topology design. Operations Research Proceedings, 27-32, 2012 (Opt Online 08/2011)
[R & Takáč 11b]	UCDC, RCDC	Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function. <i>Mathematical Programming</i> 144(2), 1-38, 2014 (arXiv:1107.2848)
[R & Takáč 12]	PCDM	Parallel coordinate descent methods for big data optimization. <i>Mathematical Programming</i> , 2015 (arXiv:1212.0873)
[S-Shwartz & Zhang 12]	SDCA	Stochastic dual coordinate ascent methods for regularized loss minimization. <i>JMLR</i> 14, 567-599, 2013 (arXiv:1209.1873)
[Necoara & Clipici 13]	RCD	A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints. COAP 57(2), 303-337, 2014 (arXiv: 1302.3074)
[Takáč et al 13]	mSDCA	Mini-batch primal and dual methods for SVMs. ICML 2013 (arXiv:1303.2314)
[Tappenden, R, & Gondzio 13]	ICD	Inexact coordinate descent. arXiv:1304.5530, 2013
[S-Shwartz & Zhang 13a]	ASDCA	Accelerated mini-batch stochastic dual coordinate ascent. NIPS 2013 (arXiv: 1305.2581)

Citation	Algorithm	Paper
[Lu & Xiao 13]	RBCD	On the complexity analysis of randomized block-coordinate descent methods . <i>Mathematical Programming</i> , 2014 (arXiv:1305.4723)
[Patrascu & Necoara 13]		Efficient random coordinate descent algorithms for large-scale structured nonconvex optimization . <i>J of Global Optimization</i> 61(1), 19-46 (arXiv:1305.4027)
[Lee & Sidford 13]	ACDM	Efficient accelerated coordinate descent methods and faster algorithms for solving linear systems. FOCS 2013 (arXiv:1305.1922)
[Tappenden, R & Buke 13]	DQA vs PCDM	Separable approximations and decomposition methods for the augmented Lagrangian. Optimization Methods and Software 30(3), 643-668, 2015 (arXiv: 1308.6774)
[S-Shwartz & Zhang 13b]	Acc Prox- SDCA	Accelerated proximal stochastic dual coordinate ascent for regularized loss minimization. <i>Mathematical Programming</i> 2014 (arXiv:1309.2375)
[Fercoq & R 13a]	SPCDM	Smooth minimization of nonsmooth functions with parallel coordinate descent methods. arXiv:1309.5885, 2013
[R & Takáč 13a]	HYDRA	Distributed coordinate descent method for learning with big data. arXiv:1310.2059, 2013
[R & Takáč 13b]	Š SYNC	On optimal probabilities in stochastic coordinate descent methods. <i>Opt. Letters,</i> 2015 (arXiv:1310.3438)
[Liu et al 13]	AsySCD	An asynchronous parallel stochastic coordinate descent algorithm. <i>ICML</i> 2014 (arXiv: 1311.1873)
[Shalit & Chechik 13]	RCM	Efficient coordinate-descent for orthogonal matrices through Givens rotations. <i>ICML</i> 2014 (arXiv:1312.0624)
[Fercoq & R 13b]	A P PROX	Accelerated, parallel and proximal coordinate descent. arXiv:1312.5799, 2013
[Yang 13]	DisDCA	Trading computation for communication: distributed stochastic dual coordinate ascent. <i>NIPS</i> 2013
[Zhao & Zhang 14]	I-Prox SDCA, I- Prox SGD	Stochastic optimization with importance sampling. ICML 2015, arXiv:1401.2753, 2014

Citation	Algorithm	Paper
[Liu & Wright 14]	AsySPCD	Asynchronous stochastic coordinate descent: parallelism and convergence properties. <i>SIAM J. on Optimization</i> , 25(1), 351–376, 2015 (arXiv:1403.3862)
[Mahajan, Keerthi & Sundararajan 14]	DBCD	A distributed block coordinate descent method for training l1 regularized linear classifiers. arXiv:1405.4544, 2014
[Fercoq et al 14]	Hydra2	Fast distributed coordinate descent for non-strongly convex losses. <i>MLSP</i> 2014 (arXiv:1405.5300)
[Mareček, R and Takáč 14]	DBCD	Distributed block coordinate descent for minimizing partially separable functions. Numerical Analysis and Opt., Springer Proc. in Math. and Stat. (arXiv:1406.0238)
[Lin, Lu & Xiao 14]	APCG	An accelerated proximal coordinate gradient method and its application to regularized empirical risk minimization. <i>NIPS</i> 2014 (arXiv:1407.1296)
[Zhang & Xiao 14]	SPDC	Stochastic primal-dual coordinate method for regularized empirical risk minimization. <i>ICML</i> 2015 (arXiv:1409.3257)
[Jaggi, Smith, Takáč et al 14]	СоСоА	Communication-efficient distributed dual coordinate ascent. <i>NIPS</i> 2014 (arXiv: 1409.1458)
[Qu, R & Zhang 14]	QUARTZ	Randomized dual coordinate ascent with arbitrary sampling. arXiv:1411.5873, 2014
[Konečný, Q & R 14]	S2CD	Semi-stochastic coordinate descent. <i>NIPS</i> Optimization Workshop, 2014 (arXiv: 1412.6293)
[Qu and R 14a]	ALPHA	Coordinate descent with arbitrary sampling I: algorithms and complexity. arXiv: 1412.8060, 2014
[Qu and R 14b]		Coordinate descent with arbitrary sampling II: expected separable overapproximation. arXiv:1412.8063, 2014
[Qu et al 15]	SDNA	SDNA: Stochastic dual newton ascent for empirical risk minimization. arXiv: 1502.02268, 2015
[Ma, Smith, Jaggi et al 15]	CoCoA+	Adding vs. averaging in distributed primal-dual optimization. ICML 2015

Citation	Algorithm	Paper
[Tappenden, Takáč & R 15]	PCDM	On the complexity of parallel coordinate descent. arXiv:1503.03033, 2015
[Csiba, Qu & R 15]	AdaSDCA	Stochastic dual coordinate ascent with adaptive probabilities. ICML 2015
[Ene & Nguyen 15]	RCDM, APPROX	Random coordinate descent methods for minimizing decomposable submodular functions. <i>ICML</i> 2015 (arXiv:1502.02643)
[S-Shwartz 15]	SDCA	SDCA without duality. arXiv:1502.06177, 2015
[Csiba & R 15]	dfSDCA	Primal method for ERM with flexible mini-batching schemes and non-convex losses . arXiv:1506.02227, 2015
[Wright 15]		Coordinate descent algorithms. <i>Mathematical Programming</i> 151(1), 3-34, 2015 (arXiv:1502.04759)
[Gower & R 15]		Randomized iterative methods for linear systems. arXiv:1506.03296, 2015
[Nutini et al 15]		Coordinate descent converges faster with the Gauss-Southwell rule than random selection. <i>ICML</i> 2015

Coordinate Descent Tricks

- **Trick 1: Arbitrary Sampling**
- Trick 2: Acceleration
- **Trick 3: Duality**
- **Trick 4: Curvature**
- **Trick 5: Parallelization / Minibatching**
- **Trick 6: Distributed Implementation**
- Trick 7: Line-search RCDM [Nesterov 10]
- Trick 8: Inexactness ICD [Tappenden, R & Gondzio 13]
- Trick 9: Asynchronicity AsySCD [Liu et al 13]
- Trick 10: Adaptivity AdaSDCA [Csiba, Qu and R 15]

Trick 1 Arbitrary Sampling

Problem

 $\min_{x \in \mathbb{R}^n} f(x)$

Smooth and strongly convex

Coordinate Descent with Arbitrary Sampling

> i.i.d. subsets of [n] = {1, 2, ..., n} (arbitrary distribution is allowed!)

Choose a random set S_t of coordinates For $i \in S_t$ do $x_i^{t+1} \leftarrow x_i^t - \frac{1}{v_i} (\nabla f(x^t))^\top e_i$ For $i \notin S_t$ do $x_i^{t+1} \leftarrow x_i^t$

[R & Takáč 13b]

Complexity Result

Theorem [R & Takáč 13b]

Key Assumption

Parameters v_1, \ldots, v_n satisfy:

Proof

Theorem 3. Let Assumptions 1 and 2 be satisfied. Choose $x^0 \in \mathbf{R}^n$, $0 < \epsilon < \phi(x^0) - \phi^*$ and $0 < \rho < 1$, where $\phi^* := \min_x \phi(x)$. Let

$$\Lambda := \max_{i} \frac{w_i}{p_i v_i}.$$
(4)

If $\{x^k\}$ are the random iterates generated by 'NSync, then

$$K \ge \frac{\Lambda}{\gamma} \log\left(\frac{\phi(x^0) - \phi^*}{\epsilon\rho}\right) \Rightarrow \mathbf{Prob}(\phi(x^K) - \phi^* \le \epsilon) \ge 1 - \rho.$$
 (5)

Moreover, we have the lower bound $\Lambda \geq (\sum_{i} \frac{w_i}{v_i}) / \mathbf{E}[|\hat{S}|].$

Proof. We first claim that ϕ is μ -strongly convex with respect to the norm $\|\cdot\|_{w \bullet p^{-1}}$, i.e.,

$$\phi(x+h) \ge \phi(x) + \langle \nabla \phi(x), h \rangle + \frac{\mu}{2} \|h\|_{w \bullet p^{-1}}^2, \tag{6}$$

where $\mu := \gamma/\Lambda$. Indeed, this follows by comparing (3) and (6) in the light of (4). Let x^* be such that $\phi(x^*) = \phi^*$. Using (6) with $h = x^* - x$,

$$\phi^* - \phi(x) \stackrel{(6)}{\geq} \min_{h' \in \mathbf{R}^n} \langle \nabla \phi(x), h' \rangle + \frac{\mu}{2} \|h'\|_{w \bullet p^{-1}}^2 = -\frac{1}{2\mu} \|\nabla \phi(x)\|_{p \bullet w^{-1}}^2.$$
(7)

Let $h^k := -(\text{Diag}(w))^{-1} \nabla \phi(x^k)$. Then $x^{k+1} = x^k + (h^k)_{[\hat{S}]}$, and utilizing Assumption 1, we get

$$\mathbf{E}[\phi(x^{k+1}) \mid x^{k}] = \mathbf{E}[\phi(x^{k} + (h^{k})_{[\hat{S}]})] \stackrel{(2)}{\leq} \phi(x^{k}) + \langle \nabla \phi(x^{k}), h^{k} \rangle_{p} + \frac{1}{2} \|h^{k}\|_{p \bullet w}^{2}$$
(8)

$$= \phi(x^k) - \frac{1}{2} \|\nabla \phi(x^k)\|_{p \bullet w^{-1}}^2 \stackrel{(7)}{\leq} \phi(x^k) - \mu(\phi(x^k) - \phi^*).$$
(9)

Taking expectations in the last inequality and rearranging the terms, we obtain $\mathbf{E}[\phi(x^{k+1}) - \phi^*] \leq (1-\mu)\mathbf{E}[\phi(x^k) - \phi^*] \leq (1-\mu)^{k+1}(\phi(x^0) - \phi^*)$. Using this, Markov inequality, and the definition of K, we finally get $\mathbf{Prob}(\phi(x^K) - \phi^* \geq \epsilon) \leq \mathbf{E}[\phi(x^K) - \phi^*]/\epsilon \leq (1-\mu)^K(\phi(x^0) - \phi^*)/\epsilon \leq \rho$.

Let us now establish the last claim. First, note that (see [16, Sec 3.2] for more results of this type),

$$\sum_{i} p_{i} = \sum_{i} \sum_{S:i \in S} p_{S} = \sum_{S} \sum_{i:i \in S} p_{S} = \sum_{S} p_{S}|S| = \mathbf{E}[|\hat{S}|].$$
(10)

Letting $\Delta := \{p' \in \mathbf{R}^n : p' \ge 0, \sum_i p'_i = \mathbf{E}[|\hat{S}|]\}$, we have

$$\Lambda \stackrel{(4)+(10)}{\geq} \min_{p' \in \Delta} \max_{i} \frac{w_i}{p'_i v_i} = \frac{1}{\mathbf{E}[|\hat{S}|]} \sum_{i} \frac{v_i}{w_i}$$

where the last equality follows since optimal p'_i is proportional to v_i/w_i .

Copy-paste from the paper

How to compute the parameters?

Theorem [Qu & R 14a]

The assumption holds if for some matrix A, f satisfies $f(x+h) \leq f(x) + \nabla f(x)^{\top}h + \frac{1}{2}h^{\top}A^{\top}Ah$ and v satisfies $P \circ A^{\top}A \preceq \text{Diag}(p \circ v)$ $P_{ij} = \mathbf{P}(\{i, j\} \subseteq S_t)$ Hadamard (element-wise) product

[Qu & R 14a] give formulas for v as a function of the data matrix A and sampling S_t

Insight 1: Importance Sampling Helps $\mathbf{P}(|S_t| = 1) = 1 \quad \mathbf{v} = \text{Diag}(A^{\top}A)$

- If we update a single coordinate in each iteration, *P* is diagonal, and we get a simple formula for *v* (independent of the probability vector *p*)
- In particular, we can choose *p* which optimizes the complexity, which leads to importance sampling:

Importance sampling:

Uniform sampling:

$$p_{i} = \frac{v_{i}}{\sum_{i} v_{i}} \qquad \max_{i} \frac{v_{i}}{p_{i}\lambda} = \underbrace{\sum_{i} v_{i}}{\lambda}$$
$$p_{i} = \frac{1}{n} \qquad \max_{i} \frac{v_{i}}{p_{i}\lambda} = \underbrace{\frac{n \max_{i} v_{i}}{\lambda}}{\lambda}$$

Average can be much smaller than max !

Bibliographic Remarks

- [Leventhal & Lewis 08] were first to study randomized CD methods (for linear systems & least squares). Moreover, they proposed nonuniform probabilities.
 - Convenient; not optimal
 - Optimal probabilities for linear systems can be computed via SDP: [Gower & R 15]
- [Nesterov 10] considered probabilities proportional to powers of coordinate-wise Lipschitz constants (for smooth convex minimization)
 - Not interpreted as optimal
- [R & Takáč 11b] gave complexity results for an arbitrary probability vector p
- [R & Takáč 13b] introduced arbitrary sampling (NSync)
 - Importance sampling as a corollary
 - Also studied importance sampling over subsets of coordinates (leads to LP)
- [Zhao & Zhang 14] studied stochastic optimization (I-Prox SGD and I-Prox SDCA) with importance sampling

Further Bibliographic Remarks

- [Qu, R & Zhang 14] were first to study ERM with arbitrary sampling (Quartz)
- [Qu & R 14a] studied standard and accelerated methods for convex composite problems with arbitrary sampling (ALPHA)
- [Csiba & R 15] extended the dual-free analysis of SDCA [S-Shwartz 15] to arbitrary sampling (dfSDCA)
 - analysis works also for non-convex loss functions as long as the average loss is convex
- [Konečný, Qu & R 14] studied a semi-stochastic coordinate descent method (S2CD) utilizing importance sampling

1 iteration of CD is often *n* times cheaper than 1 iteration of GD. However, complexity of CD can be as good as complexity of GD, and is always at most *n* times as bad. So, CD is better.

Insight 3: Speedup and Flexibility

- Speedup. Complexity improves with the size of the mini-batch | S_t |, but less than linearly
 - The amount of speedup depends on
 - data sparsity [R & Takáč 12], [Fercoq & R 13b], [Qu & R 14b]
 - spectral properties of the data [Bradley et al 11], [Takáč et al 13], [R & Takáč 13a], [Fercoq et al 14], [Qu & R 14b]
 - Hence mini-batching helps if there are gains from parallelism or reduction of memory transfers
- Flexibility. Sometimes we may be forced to sample in a certain way (e.g., distributed implementation)
 - Results with arbitrary sampling say it's OK to sample as we like

Trick 2 Acceleration

X

Zheng Qu and P.R. **Coordinate descent with arbitrary sampling I: algorithms and complexity** *arXiv:1412.8060,* 2014

L1 Regularized L1 Regression

Dorothea dataset: N = 100,000

 $00 \qquad m = 800 \qquad \omega = 6,061$
Problem

ALPHA (for smooth minimization)

STEP 3: $x^{t+1} \leftarrow y^t + \theta_t Diag^{-1}(\mathbf{p})(z^{t+1} - z^t)$

Complexity Theorem

Insights

The result makes sense: If a coordinate is optimal – do not update it!

• Unification:

- Stochastic (CD, ACD) and deterministic (GD, AGD) methods
- Single analysis recovers the best bounds

Bibliographic Remarks

- UCDM, RCDM, ACDM [Nesterov 10]
 - First combination of acceleration & randomized coordinate descent
 - Inefficient in both theory and practice
- ASDCA [S-Shwartz & Zhang 13a]
 - Interpolates between SDCA and Accelerated Gradient Descent
- Acc Prox-SDCA [S-Shwartz & Zhang 13b]
- APPROX [Fercoq & R 13b]
 - Efficient version of accelerated coordinate descent
 - Arbitrary uniform sampling
 - Incorporates accelerated coordinate descent & accelerated gradient descent as special cases
- APCG [Lin, Lu & Xiao 14]
 - Extension of APPROX to strongly convex functions & application to ERM
- SPDC [Zhang & Xiao 14]
 - Mini-batching, importance sampling, designed for ERM
- ALPHA [Qu & R 14a]
 - Extension of APPROX to arbitrary samplings
 - Unified analysis of non-accelerated and accelerated methods

Trick 3 Duality

Zheng Qu, P.R. and Tong Zhang **Randomized dual coordinate ascent with arbitrary sampling** *arXiv:1411.5873,* 2014

EMPIRICAL RISK MINIMIZATION

Primal Problem: ERM

Assumption 1

Loss functions have Lipschitz gradient

Assumption 2

Regularizer is 1-strongly convex

Dual Problem

$$D(\alpha) \equiv -\lambda g^* \left(\frac{1}{\lambda n} \sum_{i=1}^n A_i \alpha_i \right) - \frac{1}{n} \sum_{i=1}^n \phi_i^* (-\alpha_i)$$

$$f = \max_{w \in \mathbb{R}^d} \{ (w')^\top w - g(w) \} \qquad \phi_i^* (a') = \max_{a \in \mathbb{R}^m} \{ (a')^\top a - \phi_i(a) \}$$

$$\max_{\substack{\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^N = \mathbb{R}^{nm}}} D(\alpha)$$

$$\in \mathbb{R}^m \in \mathbb{R}^m$$

 g^*

Fenchel Duality

21

Optimality conditions

$$v = \nabla g^*(\bar{\alpha}) \qquad \qquad \alpha_i = -\nabla \phi_i(A_i^\top w)$$

The Algorithm

 $(\alpha^t, w^t) \implies$

 (α^{t+1}, w^{t+1})

Quartz: Bird's Eye View

STEP 1: PRIMAL UPDATE

$$w^{t+1} \leftarrow (1-\theta)w^t + \theta \nabla g^*(\bar{\alpha}^t)$$

STEP 2: DUAL UPDATE

Choose a random set S_t of dual variables

For $i \in S_t$ do $p_i = \mathbf{P}(i \in S_t)$ $\alpha_i^{t+1} \leftarrow \left(1 - \frac{\theta}{p_i}\right) \alpha_i^t + \frac{\theta}{p_i} \left(-\nabla \phi_i (A_i^\top w^{t+1})\right)$

Randomized Dual Coordinate Ascent Methods for ERM

Algorithm	1-nice	1-optimal	au-nice	arbitrary	additional speedup	direct p-d analysis	acceleration
SDCA	•						
mSDCA	•		•		•		
ASDCA	•		•				•
AccProx-SDCA	•						•
DisDCA	•		•				
Iprox-SDCA	•	•					
APCG	•						•
SPDC	•	•	•			•	•
Quartz	•	•	•	•	•	•	

SDCA: SS Shwartz & T Zhang, 09/2012 mSDCA M Takac, A Bijral, P R & N Srebro, 03/2013 ASDCA: SS Shwartz & T Zhang, 05/2013 AccProx-SDCA: SS Shwartz & T Zhang, 10/2013 DisDCA: T Yang, 2013 P Zhao & T Zhang, 01/2014 Iprox-SDCA: APCG: Q Lin, Z Lu & L Xiao, 07/2014 SPDC: Y Zhang & L Xiao, 09/2014 Z Qu, P R & T Zhang, 11/2014 Ouartz:

COMPLEXITY

Assumption 3 (Expected Separable Overapproximation)

Parameters v_1, \ldots, v_n satisfy:

$$Complexity$$
Theorem [Qu, R & Zhang 14]
$$E[P(w^{t}) - D(\alpha^{t})] \leq (1 - \theta)^{t} (P(w^{0}) - D(\alpha^{0}))$$

$$t \geq \max_{i} \left(\frac{1}{p_{i}} + \frac{v_{i}}{p_{i}\lambda\gamma n}\right) \log\left(\frac{P(w^{0}) - D(\alpha^{0})}{\epsilon}\right)$$

$$E[P(w^{t}) - D(\alpha^{t})] \leq \epsilon$$

Example

Data:
$$n = 7 \times 10^5$$

 $\gamma = \frac{1}{4}$ $v_i \equiv \lambda_{\max}(A_i^{\top}A_i) \leq 1$
Method: $|S_t| \equiv 1$ $p_i = \frac{1}{n}$ $\lambda = \frac{1}{n}$ $(1 - \theta)^n = 0.8187$
 $(1 - \theta)^{12n} = 0.0907 < \frac{1}{10}$

UPDATING 1 DUAL VARIABLE AT A TIME

Complexity of Quartz specialized to serial sampling

$$L_i \equiv \lambda_{\max} \left(A_i^\top A_i \right)$$

Experiment: Quartz vs SDCA, uniform vs optimal sampling

Trick 4 Curvature

SDNA

Zheng Qu, P.R., Martin Takáč and Olivier Fercoq SDNA: Stochastic Dual Newton Ascent for empirical risk minimization *arXiv:1502.02268*, 2015

The Power of Curvature

$$\min_{x \in \mathbb{R}^3} \left[f(x) = \frac{1}{2} x^T \mathbf{M} x + b^\top x + c \right]$$

coordinates updated

 $\mathbf{M} = \begin{pmatrix} 1.0000 & 0.9900 & 0.9999 \\ 0.9900 & 1.0000 & 0.9900 \\ 0.9999 & 0.9900 & 1.0000 \end{pmatrix}$ condition number $\approx 3 \times 10^4$

- Phenom. described in [Qu et al 15]
- Two points of view: "Exact line search in higher dimensional subspaces" or "inversion of random submatrices of the Hessian"
- Applied to ERM dual: SDNA (Stochastic Dual Newton Ascent)

Real Dataset: mushrooms d = 112 n = 8,124

SDNA

Sampling "Smallish" Submatrices of the Hessian Helps

Real Dataset: COV d = 54 n = 581,012SDNA

Trick 5 Parallelization & Minibatching

NAIVE APPROACH

anna a

 $f(x^1, x^2) = (x^1 + x^2 - 1)^2$

f(0,0) = 1

 $f(x^1, x^2) = (x^1 + x^2 - 1)^2$

Idea: averaging updates may help

Averaging can be too conservative

Averaging may be too conservative

$$f(x) = (x^{1} - 1)^{2} + (x^{2} - 1)^{2} + \dots + (x^{n} - 1)^{2}$$

Experiment with a 1 billion-by-2 billion LASSO problem [R & Takáč 12]

Coordinate Updates

Iterations

Wall Time

LASSO problem with $A \in \mathbb{R}^{m \times n}$, where $n = 10^9$ and $m = 2 \times 10^9$

Minibatching for ERM [Qu, R & Zhang 14]

Data sparsity

Quartz [Qu, R & Zhang 14]

Complexity of Quartz

Speedup

Assume the data is normalized: $L_i \equiv \lambda_{\max}(A_i^{\top}A_i) \leq 1$

Then:

$$T(\tau) = \frac{\left(1 + \frac{(\tilde{\omega} - 1)(\tau - 1)}{(n - 1)(1 + \lambda \gamma n)}\right)}{\tau} \times T(1)$$

Linear speedup up to a certain data-independent minibatch size:

$$\tau \le 2 + \lambda \gamma n$$
 $rac{\tau}{\tau} \le \frac{2}{\tau} \times T(1)$

0

/ (-1)

/

Further data-dependent speedup, up to the extreme case:

$$\tilde{\omega} = \mathcal{O}(\lambda \gamma n)$$
 \longrightarrow $T(\tau) = \mathcal{O}\left(\frac{T(1)}{\tau}\right)$

Quartz [Qu, R & Zhang 14]

Quartz: Parallelization Speedup

 $\lambda = 1/n$ # examples: $n = 10^6$ Low regularization: $\lambda = 1/\sqrt{n}$ Smoothness of loss functions: $\,\gamma=1$ High regularization: 2000 2000 • $\lambda = 1e-3$ $\lambda = 1e-3$ 700 • $\lambda = 1e-3$ $\lambda = 1e-4$ $\lambda = 1e-4$ $\sim \lambda = 1e-4$ ↓ - λ = 1e-6 $\lambda = 1e-6$ $\cdot \cdot \lambda = 1e-6$ 600 1500 1500 speed up factor speed up factor 500 speed up factor 000 000 000 000 200 500 500 100 0 500 1500 2000 1000 'n 500 1500 2000 1000 500 1000 1500 2000 τ τ τ **Fully Dense Data** Sparse Data **Denser Data** $\tilde{\omega} = 10^2$ $\tilde{\omega} =$ $\tilde{\omega} = 10^4$

Primal-dual methods with tau-nice sampling

Algorithm	Iteration complexity	g
SDCA [S-Shwartz & Zhang	$n+rac{1}{\lambda\gamma}$ 12]	$rac{1}{2}\ \cdot\ ^2$
ASDCA [S-Shwartz & Zhang	$4 \times \max\left\{\frac{n}{\tau}, \sqrt{\frac{n}{\lambda\gamma\tau}}, \frac{1}{\lambda\gamma\tau}, \frac{n^{\frac{1}{3}}}{(\lambda\gamma\tau)^{\frac{2}{3}}}\right\}$	$\frac{1}{2}\ \cdot\ ^2$
SPDC [Zhang & Xiao 14]	$\frac{n}{\tau} + \sqrt{\frac{n}{\lambda\gamma\tau}}$	general
Quartz	$\frac{n}{\tau} + \left(1 + \frac{(\tilde{\omega} - 1)(\tau - 1)}{n - 1}\right) \frac{1}{\lambda \gamma \tau}$	general

 $L_i = 1$

For sufficiently sparse data, Quartz wins even when compared against accelerated methods

Trick 5 Distributed Implementation

Distributed Quartz: Perform the Dual Updates in a Distributed Manner

Quartz STEP 2: DUAL UPDATE

Choose a random set S_t of dual variables

For $i \in S_t$ do

Distribution of Data

Distributed sampling

Distributed sampling

Each node independently picks τ dual variables from those it owns, uniformly at random

Complexity of Distributed Quartz

$\frac{n}{c\tau} + \frac{\text{Something that looks complicated}}{\lambda \gamma c \tau}$

$$\frac{n}{c\tau} + \max_{i} \frac{\lambda_{\max}\left(\sum_{j=1}^{d} \left(1 + \frac{(\tau-1)(\omega_j-1)}{\max\{n/c-1,1\}} + \left(\frac{\tau c}{n} - \frac{\tau-1}{\max\{n/c-1,1\}}\right)\frac{\omega_j'-1}{\omega_j'}\omega_j\right)A_{ji}^{\top}A_{ji}\right)}{\lambda\gamma c\tau}$$

Experiment

Machine: 128 nodes of Hector Supercomputer (4096 cores)

Problem: LASSO, *n* = 1 billion, *d* = 0.5 billion, 3 TB

Algorithm:

with *c* = 512

[R & Takáč 13a]

LASSO: 3TB data + 128 nodes

Experiment

Machine: 128 nodes of Archer Supercomputer

Problem: LASSO, n = 5 million, d = 50 billion, 5 TB (60,000 nnz per row of A)

Algorithm

with *c* = 256

[Fercoq et al 14]

LASSO: 5TB data (d = 50b) + 128 nodes

THE END