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Context: Big Data and Big Models

We are collecting data at unprecedented rates.

Seen across many fields of science and engineering.
Not gigabytes, but terabytes or petabytes (and beyond).

Machine learning can use big data to fit richer models:

Bioinformatics.
Computer vision.
Speech recognition.
Product recommendation.
Machine translation.
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Common Framework: Empirical Risk Minimization

The most common framework is empirical risk minimization:

min
x∈RP

1

N

N∑

i=1

L(x , ai , bi ) + λr(x)

data fitting term + regularizer

We have n observations ai (and possibly labels bi ).
We want to find optimal parameters x∗.

Examples range from squared error with 2-norm regularization,

min
x∈RP

1

N

N∑

i=1

1

2
(aTi x − bi )

2 +
λ

2
‖x‖2,

but also conditional random fields and deep neural networks.
Main practical challenges:

Designing/learning good features ai .
Efficiently solving the problem when N or P are very large.
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Motivation: Why Learn about Convex Optimization?

Why learn about large-scale optimization?

Optimization is at the core of many ML algorithms.
Can’t solve huge problems with traditional techniques.

Why in particular learn about convex optimization?

Among only efficiently-solvable continuous problems.
You can do a lot with convex models.

(least squares, lasso, generlized linear models, SVMs, CRFs, etc.)

Empirically effective non-convex methods are often based
methods with good properties for convex objectives.

(functions are locally convex around minimizers)

Tools from convex analysis are being extended to non-convex.
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How hard is real-valued optimization?
How long to find an ε-optimal minimizer of a real-valued function?

min
x∈Rn

f (x).

General function: impossible!

We need to make some assumptions about the function:

Assume f is Lipschitz-continuous: (can not change too quickly)

|f (x)− f (y)| ≤ L‖x − y‖.
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Optimization is hard, but assumptions make a big difference.
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Convex Functions: Three Characterizations

A function f is convex if for all x and y we have

f (θx + (1− θ)y) ≤ θf (x) + (1− θ)f (y), for θ ∈ [0, 1].

Function is below linear interpolation between x and y .

Implies that all local minima are global minima.
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Convex Functions: Three Characterizations

A function f is convex if for all x and y we have

f (θx + (1− θ)y) ≤ θf (x) + (1− θ)f (y), for θ ∈ [0, 1].

A differentiable function f is convex if for all x and y we have

f (y) ≥ f (x) +∇f (x)T (y − x),

The function is globally above the tangent at x .

If ∇f (y) = 0, implies y is a a global minimizer.
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All eigenvalues of ‘Hessian’ are non-negative.

The function is flat or curved upwards in every direction.

This is usually the easiest way to show a function is convex.
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Examples of Convex Functions

Some simple convex functions:

f (x) = c

f (x) = aT x

f (x) = ax2 + b (for a > 0)

f (x) = exp(ax)

f (x) = x log x (for x > 0)

f (x) = ‖x‖2

f (x) = ‖x‖p
f (x) = maxi{xi}

Some other notable examples:

f (x , y) = log(ex + ey )

f (X ) = log detX (for X positive-definite).

f (x ,Y ) = xTY−1x (for Y positive-definite)
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Operations that Preserve Convexity

1 Non-negative weighted sum:

f (x) = θ1f1(x) + θ2f2(x).

2 Composition with affine mapping:

g(x) = f (Ax + b).

3 Pointwise maximum:

f (x) = max
i
{fi (x)}.

Show that least-residual problems are convex for any `p-norm:

f (x) = ||Ax − b||p

We know that ‖ · ‖p is a norm, so it follows from (2).
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Show that SVMs are convex:

f (x) =
1

2
||x ||2 + C

n∑

i=1

max{0, 1− bia
T
i x}.

The first term has Hessian I � 0, for the second term use (3) on
the two (convex) arguments, then use (1) to put it all together.
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Motivation for Gradient Methods

We can solve convex optimization problems in
polynomial-time by interior-point methods

But these solvers require O(P2) or worse cost per iteration.

Infeasible for applications where P may be in the billions.

Large-scale problems have renewed interest gradient methods:

x t+1 = x t − αt∇f (x t).

Only have O(P) iteration cost!
But how many iterations are needed?
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Logistic Regression with 2-Norm Regularization

Let’s consider logistic regression with 2-norm regularization:

f (x) =
n∑

i=1

log(1 + exp(−bi (xTai ))) +
λ

2
‖x‖2.

Objective f is convex.

First term is Lipschitz continuous, second term is not.

But we have

µI � ∇2f (x) � LI ,

for some L and µ.
(L ≤ 1

4
‖A‖2

2 + λ, µ ≥ λ)

We say that the gradient is Lipschitz-continuous.

We say that the function is strongly-convex.
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Properties of Lipschitz-Continuous Gradient

From Taylor’s theorem, for some z we have:

f (y) = f (x) +∇f (x)T (y − x) +
1

2
(y − x)T∇2f (z)(y − x)

Use that ∇2f (z) � LI .

f (y) ≤ f (x) +∇f (x)T (y − x) +
L

2
‖y − x‖2

Global quadratic upper bound on function value.

Variant of gradient method if we set x t+1 to minimum y
value:

x t+1 = x t − 1

L
∇f (x t).

Plugging this value in:

f (x t+1) ≤ f (x t)− 1

2L
‖∇f (x t)‖2.

Guaranteed decrease of objective.
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Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)
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Properties of Strong-Convexity
From Taylor’s theorem, for some z we have:

f (y) = f (x) +∇f (x)T (y − x) +
1

2
(y − x)T∇2f (z)(y − x)

Use that ∇2f (z) � µI .
f (y) ≥ f (x) +∇f (x)T (y − x) +

µ

2
‖y − x‖2

Global quadratic lower bound on function value.
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Minimize both sides in terms of y :

f (x∗) ≥ f (x)− 1

2µ
‖∇f (x)‖2.

Upper bound on how far we are from the solution.
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Linear Convergence of Gradient Descent

We have bounds on x t+1 and x∗:

f (x t+1) ≤ f (x t)− 1

2L
‖∇f (x t)‖2, f (x∗) ≥ f (x t)− 1

2µ
‖∇f (x t)‖2.
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Linear Convergence of Gradient Descent

We have bounds on x t+1 and x∗:

f (x t+1) ≤ f (x t)− 1

2L
‖∇f (x t)‖2, f (x∗) ≥ f (x t)− 1

2µ
‖∇f (x t)‖2.

combine them to get

f (x t+1)− f (x∗) ≤
(

1− µ

L

)
[f (x t)− f (x∗)]

This gives a linear convergence rate:

f (x t)− f (x∗) ≤
(

1− µ

L

)t
[f (x0)− f (x∗)]

Each iteration multiplies the error by a fixed amount.
(very fast if µ/L is not too close to one)
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Maximum Likelihood Logistic Regression
What about maximum-likelihood logistic regression?

f (x) =
n∑

i=1

log(1 + exp(−bi (xTai ))).

We now only have

0 � ∇2f (x) � LI .

Convexity only gives a linear upper bound on f (x∗):

f (x∗) ≤ f (x) +∇f (x)T (x∗ − x)
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Maximum Likelihood Logistic Regression

Consider maximum-likelihood logistic regression:

f (x) =
n∑

i=1

log(1 + exp(−bi (xTai ))).

We now only have

0 � ∇2f (x) � LI .

Convexity only gives a linear upper bound on f (x∗):

f (x∗) ≤ f (x) +∇f (x)T (x∗ − x)

If some x∗ exists, we have the sublinear convergence rate:

f (x t)− f (x∗) = O(1/t)

(compare to slower Ω(1/t−1/N) for general Lipschitz functions)

If f is convex, then f + λ‖x‖2 is strongly-convex.
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Gradient Method: Practical Issues
In practice, searching for step size (line-search) is usually
much faster than α = 1/L.

(and doesn’t require knowledge of L)

Basic Armijo backtracking line-search:
1 Start with a large value of α.
2 Divide α in half until we satisfy (typically value is γ = .0001)

f (x t+1) ≤ f (x t)− γα||∇f (x t)||2.
Practical methods may use Wolfe conditions (so α isn’t too
small), and/or use interpolation to propose trial step sizes.

(with good interpolation, ≈ 1 evaluation of f per iteration)

Also, check your derivative code!

∇i f (x) ≈ f (x + δei )− f (x)

δ
For large-scale problems you can check a random direction d :

∇f (x)Td ≈ f (x + δd)− f (x)

δ
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Accelerated Gradient Method

Is this the best algorithm under these assumptions?

Algorithm Assumptions Rate

Gradient Convex O(1/t)
Nesterov Convex O(1/t2)
Gradient Strongly-Convex O((1− µ/L)t)

Nesterov Strongly-Convex O((1−
√
µ/L)t)

Nesterov’s accelerated gradient method:

xt+1 = yt − αt∇f (yt),

yt+1 = xt + βt(xt+1 − xt),

for appropriate αt , βt .

Rate is nearly-optimal for dimension-independent algorithm.

Similar to heavy-ball/momentum and conjugate gradient.

For logistic regression and many other losses, we can get
linear convergence without strong-convexity [Luo & Tseng, 1993].
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Newton’s Method

The oldest differentiable optimization method is Newton’s.
(also called IRLS for functions of the form f (Ax))

Modern form uses the update

x t+1 = x t − αd ,
where d is a solution to the system

∇2f (x)d = ∇f (x).
(Assumes ∇2f (x) � 0)

Equivalent to minimizing the quadratic approximation:

f (y) ≈ f (x) +∇f (x)T (y − x) +
1

2α
‖y − x‖2

∇2f (x).

(recall that ‖x‖2
H = xTHx)

We can generalize the Armijo condition to

f (x t+1) ≤ f (x t) + γα∇f (x t)Td .

Has a natural step length of α = 1.
(always accepted when close to a minimizer)
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Convergence Rate of Newton’s Method

If ∇2f (x) is Lipschitz-continuous and ∇2f (x) � µ, then close
to x∗ Newton’s method has local superlinear convergence:

f (x t+1)− f (x∗) ≤ ρt [f (x t)− f (x∗)],

with limt→∞ ρt = 0.

Converges very fast, use it if you can!

But requires solving ∇2f (x)d = ∇f (x).

Get global rates under various assumptions
(cubic-regularization/accelerated/self-concordant).
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Newton’s Method: Practical Issues
There are many practical variants of Newton’s method:

Modify the Hessian to be positive-definite.

Only compute the Hessian every m iterations.

Only use the diagonals of the Hessian.

Quasi-Newton: Update a (diagonal plus low-rank)
approximation of the Hessian (BFGS, L-BFGS).

Hessian-free: Compute d inexactly using Hessian-vector
products:

∇2f (x)d = lim
δ→0

∇f (x + δd)−∇f (x)

δ

Barzilai-Borwein: Choose a step-size that acts like the Hessian
over the last iteration:

α =
(x t+1 − x t)T (∇f (x t+1)−∇f (x t))

‖∇f (x t+1)− f (x t)‖2

Another related method is nonlinear conjugate gradient.
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Big-N Problems

Recall the regularized empirical risk minimization problem:

min
x∈RP

1

N

N∑

i=1

L(x , ai , bi ) + λr(x)

data fitting term + regularizer

What if number of training examples N is very large?

E.g., ImageNet has more than 14 million annotated images.
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Stochastic vs. Deterministic Gradient Methods

We consider minimizing f (x) = 1
N

∑N
i=1 fi (x).

Deterministic gradient method [Cauchy, 1847]:

xt+1 = xt − αt∇f (xt) = xt −
αt

N

N∑

i=1

∇fi (xt).

Iteration cost is linear in N.
Convergence with constant αt or line-search.

Stochastic gradient method [Robbins & Monro, 1951]:
Random selection of i from {1, 2, . . . ,N}.

xt+1 = xt − αt f
′
i (xt).

Gives unbiased estimate of true gradient,

E[f ′(i)(x)] =
1

N

N∑

i=1

∇fi (x) = ∇f (x).

Iteration cost is independent of N.
Convergence requires αt → 0.
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Stochastic vs. Deterministic Gradient Methods

We consider minimizing g(x) = 1
N

∑n
i=1 fi (x).

Deterministic gradient method [Cauchy, 1847]:

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)

Stochastic gradient method [Robbins & Monro, 1951]:

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑
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f ′
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Stochastic vs. Deterministic Gradient Methods

Stochastic iterations are N times faster, but how many iterations?

Assumption Deterministic Stochastic

Convex O(1/t2) O(1/
√
t)

Strongly O((1−
√
µ/L)t) O(1/t)

Stochastic has low iteration cost but slow convergence rate.

Sublinear rate even in strongly-convex case.
Bounds are unimprovable if only unbiased gradient available.
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Stochastic vs. Deterministic Convergence Rates
Plot of convergence rates in strongly-convex case:

Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost

time

lo
g(

ex
ce

ss
 c

os
t)

stochastic

deterministic

Stochastic will be superior for low-accuracy/time situations.
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Stochastic vs. Deterministic for Non-Smooth

Consider the binary support vector machine objective:

f (x) =
n∑

i=1

max{0, 1− bi (x
Tai )}+

λ

2
‖x‖2.

Rates for subgradient methods for non-smooth objectives:

Assumption Deterministic Stochastic

Convex O(1/
√
t) O(1/

√
t)

Strongly O(1/t) O(1/t)

Other black-box methods (cutting plane) are not faster.

For non-smooth problems:

Stochastic methods have same rate as smooth case.
Deterministic methods are not faster than stochastic method.
So use stochastic subgradient (iterations are n times faster).
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Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

f (y) ≥ f (x) +∇f (x)T (y − x), ∀x , y .

A vector d is a subgradient of a convex function f at x if

f (y) ≥ f (x) + dT (y − x),∀y .

At differentiable x :

Only subgradient is ∇f (x).

At non-differentiable x :

We have a set of subgradients.
Called the sub-differential, ∂f (x).

Note that 0 ∈ ∂f (x) iff x is a global minimum.
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Sub-Differential of Absolute Value and Max Functions

Sub-differential of absolute value function:

∂|x | =





1 x > 0

−1 x < 0

[−1, 1] x = 0

(sign of the variable if non-zero, anything in [−1, 1] at 0)
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Sub-Differential of Absolute Value and Max Functions

Sub-differential of absolute value function:

∂|x | =





1 x > 0

−1 x < 0

[−1, 1] x = 0

(sign of the variable if non-zero, anything in [−1, 1] at 0)

Sub-differential of max function:

∂max{f1(x), f2(x)} =





∇f1(x) f1(x) > f2(x)

∇f2(x) f2(x) > f1(x)

θ∇f1(x) + (1− θ)∇f2(x) f1(x) = f2(x)

(any convex combination of the gradients of the argmax)
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Subgradient and Stochastic Subgradient methods

The basic subgradient method:

x t+1 = x t − αd ,

for some d ∈ ∂f (x t).

The steepest descent choice is given by argmind∈∂f (x){‖d‖}.
(often hard to compute, but easy for `1-regularization)

Otherwise, may increase the objective even for small α.

But ‖x t+1 − x∗‖ ≤ ‖x t − x∗‖ for small enough α.

For convergence, we require α→ 0.

The basic stochastic subgradient method:

x t+1 = x t − αd ,

for some d ∈ ∂fi (x t) for some random i ∈ {1, 2, . . . ,N}.



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods Non-Smooth Objectives

Subgradient and Stochastic Subgradient methods

The basic subgradient method:

x t+1 = x t − αd ,

for some d ∈ ∂f (x t).

The steepest descent choice is given by argmind∈∂f (x){‖d‖}.
(often hard to compute, but easy for `1-regularization)

Otherwise, may increase the objective even for small α.

But ‖x t+1 − x∗‖ ≤ ‖x t − x∗‖ for small enough α.

For convergence, we require α→ 0.

The basic stochastic subgradient method:

x t+1 = x t − αd ,

for some d ∈ ∂fi (x t) for some random i ∈ {1, 2, . . . ,N}.



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods Non-Smooth Objectives

Subgradient and Stochastic Subgradient methods

The basic subgradient method:

x t+1 = x t − αd ,

for some d ∈ ∂f (x t).

The steepest descent choice is given by argmind∈∂f (x){‖d‖}.
(often hard to compute, but easy for `1-regularization)

Otherwise, may increase the objective even for small α.

But ‖x t+1 − x∗‖ ≤ ‖x t − x∗‖ for small enough α.

For convergence, we require α→ 0.

The basic stochastic subgradient method:

x t+1 = x t − αd ,

for some d ∈ ∂fi (x t) for some random i ∈ {1, 2, . . . ,N}.



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods Non-Smooth Objectives

Subgradient and Stochastic Subgradient methods

The basic subgradient method:

x t+1 = x t − αd ,

for some d ∈ ∂f (x t).

The steepest descent choice is given by argmind∈∂f (x){‖d‖}.
(often hard to compute, but easy for `1-regularization)

Otherwise, may increase the objective even for small α.

But ‖x t+1 − x∗‖ ≤ ‖x t − x∗‖ for small enough α.

For convergence, we require α→ 0.

The basic stochastic subgradient method:

x t+1 = x t − αd ,

for some d ∈ ∂fi (x t) for some random i ∈ {1, 2, . . . ,N}.



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods Non-Smooth Objectives

Stochastic Subgradient Methods in Practice

The theory says to use decreasing sequence αt = 1/µt:

it = rand(1, 2, . . . ,N), αt =
1

µt

x t+1 = x t − αt f
′
it (x

t).

O(1/t) for smooth objectives.
O(log(t)/t) for non-smooth objectives.

Except for some special cases, you should not do this.
Initial steps are huge: usually µ = O(1/N) or O(1/

√
N).

Later steps are tiny: 1/t gets small very quickly.
Convergence rate is not robust to mis-specification of µ.
No adaptation to ‘easier’ problems than worst case.

Tricks that can improve theoretical and practical properties:
1 Use smaller initial step-sizes, that go to zero more slowly.
2 Take a (weighted) average of the iterations or gradients:

x̄t =
t∑

i=1

ωtxt , d̄t =
t∑

i=1

δtdt .
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Speeding up Stochastic Subgradient Methods

Works that support using large steps and averaging:

Rakhlin et at. [2011]:

Averaging later iterations achieves O(1/t) in non-smooth case.

Nesterov [2007], Xiao [2010]:

Gradient averaging improves constants (‘dual averaging’).
Finds non-zero variables with sparse regularizers.

Bach & Moulines [2011]:

αt = O(1/tβ) for β ∈ (0.5, 1) more robust than αt = O(1/t).

Nedic & Bertsekas [2000]:

Constant step size (αt = α) achieves rate of

E[f (x t)]− f (x∗) ≤ (1− 2µα)t(f (x0)− f (x∗)) + O(α).

Polyak & Juditsky [1992]:

In smooth case, iterate averaging is asymptotically optimal.
Achieves same rate as optimal stochastic Newton method.
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Stochastic Newton Methods?

Should we use accelerated/Newton-like stochastic methods?

These do not improve the convergence rate.

But some positive results exist.
Ghadimi & Lan [2010]:

Acceleration can improve dependence on L and µ.
Improves performance at start or if noise is small.

Duchi et al. [2010]:

Newton-like methods can improve regret bounds.

Bach & Moulines [2013]:

Newton-like method achieves O(1/t) without
strong-convexity.
(under extra self-concordance assumption)
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Big-N Problems

Recall the regularized empirical risk minimization problem:

min
x∈RP

1

N

N∑

i=1

L(x , ai , bi ) + λr(x)

data fitting term + regularizer

Stochastic methods:

O(1/t) convergence but requires 1 gradient per iterations.
Rates are unimprovable for general stochastic objectives.

Deterministic methods:

O(ρt) convergence but requires N gradients per iteration.
The faster rate is possible because N is finite.

For minimizing finite sums, can we design a better method?
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Motivation for Hybrid Methods

Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost

time
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deterministic
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Hybrid Deterministic-Stochastic

Approach 1: control the sample size.

The FG method uses all N gradients,

∇f (x t) =
1

N

N∑

i=1

fi (x
t).

The SG method approximates it with 1 sample,

fit (x
t) ≈ 1

N

N∑

i=1

fi (x
t).

A common variant is to use larger sample Bt ,

1

|Bt |
∑

i∈Bt
f ′i (x t) ≈ 1

N

N∑

i=1

fi (x
t).
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Approach 1: Batching

The SG method with a sample Bt uses iterations

x t+1 = x t − αt

|Bt |
∑

i∈Bt
fi (x

t).

For a fixed sample size |Bt |, the rate is sublinear.

Gradient error decreases as sample size |Bt | increases.
Common to gradually increase the sample size |Bt |.
[Bertsekas & Tsitsiklis, 1996]

We can choose |Bt | to achieve a linear convergence rate:

Early iterations are cheap like SG iterations.
Later iterations can use a Newton-like method.
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Evaluation on Chain-Structured CRFs

Results on chain-structured conditional random field:
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Stochastic Average Gradient

Growing |Bt | eventually requires O(N) iteration cost.

Can we have a rate of O(ρt) with only 1 gradient
evaluation per iteration?

YES! The stochastic average gradient (SAG) algorithm:

Randomly select it from {1, 2, . . . ,N} and compute f ′it (x
t).

x t+1 = x t − αt

N

N∑
i=1

∇fi (x t)

Memory: y t
i = ∇fi (x t) from the last t where i was selected.

[Le Roux et al., 2012]

Stochastic variant of increment average gradient (IAG).
[Blatt et al., 2007]

Assumes gradients of non-selected examples don’t change.
Assumption becomes accurate as ||x t+1 − x t || → 0.
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Convergence Rate of SAG

If each f ′i is L−continuous and f is strongly-convex,
with αt = 1/16L SAG has

E[f (x t)− f (x∗)] 6

(
1−min

{
µ

16L
,

1

8N

})t

C ,

where

C = [f (x0)− f (x∗)] +
4L

N
‖x0 − x∗‖2 +

σ2

16L
.

Linear convergence rate but only 1 gradient per iteration.
For well-conditioned problems, constant reduction per pass:

(
1− 1

8N

)N

≤ exp

(
−1

8

)
= 0.8825.

For ill-conditioned problems, almost same as deterministic
method (but N times faster).
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Rate of Convergence Comparison
Assume that N = 700000, L = 0.25, µ = 1/N:

Gradient method has rate
(

L−µ
L+µ

)2

= 0.99998.

Accelerated gradient method has rate
(
1−

√
µ
L

)
= 0.99761.

SAG (N iterations) has rate
(
1−min

{
µ

16L ,
1

8N

})N
= 0.88250.

Fastest possible first-order method:
(√

L−√µ√
L+
√
µ

)2

= 0.99048.

SAG beats two lower bounds:
Stochastic gradient bound (of O(1/t)).
Deterministic gradient bound (for typical L, µ, and N).

Number of f ′i evaluations to reach ε:
Stochastic: O( L

µ (1/ε)).

Gradient: O(N L
µ log(1/ε)).

Accelerated: O(N
√

L
µ log(1/ε)).

SAG: O(max{N, L
µ} log(1/ε)).
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Comparing Deterministic and Stochatic Methods

quantum (n = 50000, p = 78) and rcv1 (n = 697641,
p = 47236)
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SAG Compared to FG and SG Methods

quantum (n = 50000, p = 78) and rcv1 (n = 697641,
p = 47236)
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Other Linearly-Convergent Stochastic Methods

Newer stochastic algorithms are now available with linear
rates:

Stochastic dual coordinate ascent [Shalev-Schwartz & Zhang, 2013]

Incremental surrogate optimization [Mairal, 2013].
Stochastic variance-reduced gradient (SVRG)
[Johnson & Zhang, 2013, Konecny & Richtarik, 2013, Mahdavi et al.,

2013, Zhang et al., 2013]

SAGA [Defazio et al., 2014]

SVRG has a much lower memory requirement (later in talk).

There are also non-smooth extensions (last part of talk).
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SAG Implementation Issues

Basic SAG algorithm:

while(1)
Sample i from {1, 2, . . . ,N}.
Compute f ′i (x).
d = d − yi + f ′i (x).
yi = f ′i (x).
x = x − α

N .

Practical variants of the basic algorithm allow:

Regularization.
Sparse gradients.
Automatic step-size selection.
Termination criterion.
Acceleration [Lin et al., 2015].
Adaptive non-uniform sampling [Schmidt et al., 2013]:

Sample gradients that change quickly more often.
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SAG with Adaptive Non-Uniform Sampling

protein (n = 145751, p = 74) and sido (n = 12678, p = 4932)
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SAG with Non-Uniform Sampling
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Minimizing Finite Sums: Dealing with the Memory

A major disadvantage of SAG is the memory requirement.

There are several ways to avoid this:

Use mini-batches (only store gradient of the mini-batch).
Use structure in the objective:

For fi (x) = L(aTi x), only need to store N values of aTi x .
For CRFs, only need to store marginals of parts.
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(optical character and named-entity recognition tasks)

If the above don’t work, use SVRG...
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Stochastic Variance-Reduced Gradient

SVRG algorithm:

Start with x0

for s = 0, 1, 2 . . .

ds = 1
N

∑N
i=1 f

′
i (xs)

x0 = xs

for t = 1, 2, . . .m

Randomly pick it ∈ {1, 2, . . . ,N}
x t = x t−1 − αt(f

′
it (x

t−1)− f ′it (xs) + ds).

xs+1 = x t for random t ∈ {1, 2, . . . ,m}.
Requires 2 gradients per iteration and occasional full passes,
but only requires storing ds and xs .
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Motivation: Sparse Regularization

Recall the regularized empirical risk minimization problem:

min
x∈RP

1

N

N∑

i=1

L(x , ai , bi ) + λr(x)

data fitting term + regularizer

Often, regularizer r is used to encourage sparsity pattern in x .

For example, `1-regularized least squares,

min
x
‖Ax − b‖2 + λ‖x‖1

Regularizes and encourages sparsity in x

The objective is non-differentiable when any xi = 0.

Subgradient methods are optimal (slow) black-box methods.

Faster methods for specific non-smooth problems?
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Smoothing: replace non-smooth f with smooth fε.

Apply a fast method for smooth optimization.

Smooth approximation to the absolute value:

|x | ≈
√
x2 + ν.
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Discussion of Smoothing Approach

Nesterov [2005] shows that:

Gradient method on smoothed problem has O(1/
√
t)

subgradient rate.
Accelerated gradient method has faster O(1/t) rate.

In practice:

Slowly decrease level of smoothing (often difficult to tune).
Use faster algorithms like L-BFGS, SAG, or SVRG.

You can get the O(1/t) rate for minx max{fi (x)} for fi convex
and smooth using mirror-prox method.[Nemirovski, 2004]

See also Chambolle & Pock [2010].
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Converting to Constrained Optimization

Re-write non-smooth problem as constrained problem.

The problem
min
x

f (x) + λ‖x‖1,

is equivalent to the problem

min
x+≥0,x−≥0

f (x+ − x−) + λ
∑

i

(x+
i + x−i ),

or the problems

min
−y≤x≤y

f (x) + λ
∑

i

yi , min
‖x‖1≤γ

f (x) + λγ

These are smooth objective with ‘simple’ constraints.

min
x∈C

f (x).
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Optimization with Simple Constraints

Recall: gradient descent minimizes quadratic approximation:

x t+1 = argmin
y

{
f (x t) +∇f (x t)T (y − x t) +

1

2αt
‖y − x t‖2

}
.

Consider minimizing subject to simple constraints:

x t+1 = argmin
y∈C

{
f (x t) +∇f (x t)T (y − x t) +

1

2αt
‖y − x t‖2

}
.

Equivalent to projection of gradient descent:

xGDt = x t − αt∇f (x t),

x t+1 = argmin
y∈C

{
‖y − xGDt ‖

}
,
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Discussion of Projected Gradient

Projected gradient has same rate as gradient method!

Can do many of the same tricks (i.e. line-search, acceleration,
Barzilai-Borwein, SAG, SVRG).

For projected Newton, you need to do an expensive projection
under ‖ · ‖Ht .

Two-metric projection methods allow Newton-like strategy for
bound constraints.
Inexact Newton methods allow Newton-like like strategy for
optimizing costly functions with simple constraints.
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Projection Onto Simple Sets

Projections onto simple sets:

argminy≥0 ‖y − x‖ = max{x , 0}

argminl≤y≤u ‖y − x‖ = max{l ,min{x , u}}
argminaT y=b ‖y − x‖ = x + (b − aT x)a/‖a‖2.

argminaT y≥b ‖y − x‖ =

{
x aT x ≥ b

x + (b − aT x)a/‖a‖2 aT x < b

argmin‖y‖≤τ ‖y − x‖ = τx/‖x‖.
Linear-time algorithm for `1-norm ‖y‖1 ≤ τ .

Linear-time algorithm for probability simplex y ≥ 0,
∑

y = 1.

Intersection of simple sets: Dykstra’s algorithm.

We can solve large instances of problems with these constraints.
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Proximal-Gradient Method

A generalization of projected-gradient is Proximal-gradient.

The proximal-gradient method addresses problem of the form

min
x

f (x) + r(x),

where f is smooth but r is a general convex function.

Applies proximity operator of r to gradient descent on f :

xGDt = x t − αt∇f (xt),

x t+1 = argmin
y

{
1

2
‖y − xGDt ‖2 + αr(y)

}
,

Equivalent to using the approximation

x t+1 = argmin
y

{
f (x t) +∇f (x t)T (y − x t) +

1

2α
‖y − x t‖2+r(y)

}
.

Convergence rates are still the same as for minimizing f .
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Proximal Operator, Iterative Soft Thresholding

The proximal operator is the solution to

proxr [y ] = argmin
x∈RP

r(x) +
1

2
‖x − y‖2.

For L1-regularization, we obtain iterative soft-thresholding:

x t+1 = softThreshαλ[x t − α∇f (x t)].

Example with λ = 1:
Input Threshold Soft-Threshold




0.6715
−1.2075
0.7172
1.6302
0.4889







0
−1.2075

0
1.6302

0







0
−0.2075

0
0.6302

0
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Special case of Projected-Gradient Methods

Projected-gradient methods are another special case:

r(x) =

{
0 if x ∈ C
∞ if x /∈ C

,

gives
x t+1 = projectC[x t − α∇f (x t)],

f(x)

x



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods Non-Smooth Objectives

Special case of Projected-Gradient Methods

Projected-gradient methods are another special case:

r(x) =

{
0 if x ∈ C
∞ if x /∈ C

,

gives
x t+1 = projectC[x t − α∇f (x t)],

f(x)

x



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods Non-Smooth Objectives

Special case of Projected-Gradient Methods

Projected-gradient methods are another special case:

r(x) =

{
0 if x ∈ C
∞ if x /∈ C

,

gives
x t+1 = projectC[x t − α∇f (x t)],

f(x)

x



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods Non-Smooth Objectives

Special case of Projected-Gradient Methods

Projected-gradient methods are another special case:

r(x) =

{
0 if x ∈ C
∞ if x /∈ C

,

gives
x t+1 = projectC[x t − α∇f (x t)],

Feasible Set

f(x)

x



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods Non-Smooth Objectives

Special case of Projected-Gradient Methods

Projected-gradient methods are another special case:

r(x) =

{
0 if x ∈ C
∞ if x /∈ C

,

gives
x t+1 = projectC[x t − α∇f (x t)],

Feasible Set

x - !f’(x)
f(x)

x



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods Non-Smooth Objectives

Special case of Projected-Gradient Methods

Projected-gradient methods are another special case:

r(x) =

{
0 if x ∈ C
∞ if x /∈ C

,

gives
x t+1 = projectC[x t − α∇f (x t)],

Feasible Set

f(x)

x

x - !f’(x)



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods Non-Smooth Objectives

Special case of Projected-Gradient Methods

Projected-gradient methods are another special case:

r(x) =

{
0 if x ∈ C
∞ if x /∈ C

,

gives
x t+1 = projectC[x t − α∇f (x t)],

Feasible Set

x+

f(x)

x

x - !f’(x)



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods Non-Smooth Objectives

Exact Proximal-Gradient Methods

For what problems can we apply these methods?

We can efficiently compute the proximity operator for:
1 L1-Regularization.
2 Group `1-Regularization.
3 Lower and upper bounds.
4 Small number of linear constraint.
5 Probability constraints.
6 A few other simple regularizers/constraints.

Can solve these non-smooth/constrained problems as fast as
smooth/unconstrained problems!

We can again do many of the same tricks (line-search,
acceleration, Barzilai-Borwein, two-metric projection, inexact
proximal operators, SAG, SVRG).
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Alternating Direction Method of Multipliers

Alernating direction method of multipliers (ADMM) solves:

min
Ax+By=c

f (x) + r(y).

Alternate between prox-like operators with respect to f and r .

Can introduce constraints to convert to this form:

min
x

f (Ax) + r(x) ⇔ min
x=Ay

f (x) + r(y),

min
x

f (x) + r(Bx) ⇔ min
y=Bx

f (x) + r(y).

If prox can not be computed exactly: Linearized ADMM.
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Frank-Wolfe Method

In some cases the projected gradient step

x t+1 = argmin
y∈C

{
f (x t) +∇f (x t)T (y − x t) +

1

2αt
‖y − x t‖2

}
,

may be hard to compute (e.g., dual of max-margin Markov
networks).

Frank-Wolfe method simply uses:

x t+1 = argmin
y∈C

{
f (x t) +∇f (x t)T (y − x t)

}
,

requires compact C, takes convex combination of x t and x t+1.

Iterate can be written as convex combination of vertices of C.

O(1/t) rate for smooth convex objectives, some linear
convergence results for smooth and strongly-convex.[Jaggi, 2013]
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Alternatives to Quadratic/Linear Surrogates

Mirror descent uses the iterations[Beck & Teboulle, 2003]

x t+1 = argmin
y∈C

{
f (x) +∇f (x)T (y − x t) +

1

2αt
D(x t , y)

}
,

where D is a Bregman-divergence:

D = ‖x t − y‖2 (gradient method).
D = ‖x t − y‖2

H (Newton’s method).

D =
∑

i x
t
i log(

x t
i

yi
)−∑i (x

t
i − yi ) (exponentiated gradient).

Mairal [2013,2014] considers general surrogate optimization:

x t+1 = argmin
y∈C

{g(y)} ,

where g upper bounds f , g(x t) = f (x t), ∇g(x t) = ∇f (x t),
and ∇g −∇f is Lipschitz-continuous.

Get O(1/k) and linear convergence rates depending on g − f .
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Dual Methods

Stronly-convex problems have smooth duals.

Solve the dual instead of the primal.

SVM non-smooth strongly-convex primal:

min
x

C
N∑

i=1

max{0, 1− bia
T
i x}+

1

2
‖x‖2.

SVM smooth dual:

min
0≤α≤C

1

2
αTAATα−

N∑

i=1

αi

Smooth bound constrained problem:

Two-metric projection (efficient Newton-liked method).
Randomized coordinate descent (part 2 of this talk).
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Summary

Summary:

Part 1: Convex functions have special properties that allow us
to efficiently minimize them.

Part 2: Gradient-based methods allow elegant scaling with
dimensionality of problem.

Part 3: Stochastic-gradient methods allow scaling with
number of training examples, at cost of slower convergence
rate.

Part 4: For finite datasets, SAG fixes convergence rate of
stochastic gradient methods, and SVRG fixes memory
problem of SAG.

Part 5: These building blocks can be extended to solve a
variety of constrained and non-smooth problems.
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