covering number

  • Robert Grande and Thomas Walsh and Jonathan How

    Sample Efficient Reinforcement Learning with Gaussian Processes (pdf)

    This paper derives sample complexity results for using Gaussian Processes (GPs) in both model-based and model-free reinforcement learning (RL). We show that GPs are KWIK learnable, proving for the first time that a model-based RL approach using GPs, GP-Rmax, is sample efficient (PAC-MDP). However, we then show that previous approaches to model-free RL using GPs take an exponential number of steps to find an optimal policy, and are therefore not sample efficient. The third and main contribution is the introduction of a model-free RL algorithm using GPs, DGPQ, which is sample efficient and, in contrast to model-based algorithms, capable of acting in real time, as demonstrated on a five-dimensional aircraft simulator.

  • Zongzhang Zhang and David Hsu and Wee Sun Lee

    Covering Number for Efficient Heuristic-based POMDP Planning (pdf)

    The difficulty of POMDP planning depends on the size of the search space involved. Heuristics are often used to reduce the search space size and improve computational efficiency; however, there are few theoretical bounds on their effectiveness. In this paper, we use the covering number to characterize the size of the search space reachable under heuristics and connect the complexity of POMDP planning to the effectiveness of heuristics. With insights from the theoretical analysis, we have developed a practical POMDP algorithm, Packing-Guided Value Iteration (PGVI). Empirically, PGVI is competitive with the state-of-the-art point-based POMDP algorithms on 65 small benchmark problems and outperforms them on 4 larger problems.

2013-2014 ICML | International Conference on Machine Learning