International Conference on Machine Learning June 26–July 1, 2012 — Edinburgh, Scotland

Conference schedule

The conference schedule will be modified a bit from previous years; see the changelog for more details.

The table below provides an overview of the conference schedule and the colocation with COLT.

COLT ICML (daytime) ICML (evening)
25 June Monday COLT Sessions
Tuesday COLT Sessions ICML Tutorials ICML Reception
Wednesday ICML/COLT Joint day Poster Session 1
Thursday ICML Sessions Poster Session 2
Friday ICML Sessions Poster Session 3
Saturday Workshops Banquet
1 July Sunday Workshops

ICML program overview

All plenary sessions will be split between AT LT 2, AT LT 4, and AT LT 5. Volunteers will direct you to the appropriate lecture theatre.

June 26

Tuesday

See the full tutorial list.

09:00 AT LT4, 2h30

Statistical Learning Theory in Reinforcement Learning and Approximate Dynamic Programming

AT LT5, 2h30

Probabilistic Topic Models

AT LT1, 2h30

Performance Evaluation for Learning Algorithms: Techniques, Application and Issues

12:30 AT LT4, 1h

Mirror Descent and Saddle Point First Order Algorithms (Invited COLT Tutorial)

AT LT5, 2h30

Representation Learning

AT LT1, 2h30

Prediction, Belief, and Markets

15:30 AT LT1, 2h30

PAC-Bayesian Analysis in Supervised, Unsupervised, and Reinforcement Learning

AT LT4, 2h30

Causal Inference - Conditional Independency and Beyond

AT LT5, 2h30

Spectral Approaches to Learning Latent Variable Models

18:30 Scottish National Gallery, The Mound

Conference reception. Leave from IF just after 18:00

June 27

Wednesday

8:30

Welcome

8:40

Invited talk plenary
Sethu Muthukrishnan
Modern Algorithmic Tools for Analyzing Data Streams

9:40

ICML Best paper award plenary

10:00

Coffee

10:30

Session 1A, 1B, 1C, 1D

12:10

Lunch

14:00

Invited talk plenary
Dimitris Achlioptas
Algorithmic Phase Transitions in Constraint Satisfaction Problems

15:00

COLT Best paper award plenary

15:30

Coffee

16:00

Session 2A, 2B, 2C, 2D

17:40

Posters

18:00

Open problem session plenary

ICML Full program

June 27

Plenary Session

room AT LT2 LT4 LT5

9:40

Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring

Sungjin Ahn, Anoop Korattikara, Max Welling

June 27

Session 1A — Optimization algorithms 1

chair Elad Hazan, room AT LT 4

10:30

On the Equivalence between Herding and Conditional Gradient Algorithms

Francis Bach, Simon Lacoste-Julien, Guillaume Obozinski

10:50

Similarity Learning for Provably Accurate Sparse Linear Classification

Aurélien Bellet, Amaury Habrard, Marc Sebban

11:30

Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization

Alexander Rakhlin, Ohad Shamir, Karthik Sridharan

11:50

Scaling Up Coordinate Descent Algorithms for Large ℓ_1 Regularization Problems

Chad Scherrer, Mahantesh Halappanavar, Ambuj Tewari, David Haglin

11:55

Quasi-Newton Methods: A New Direction

Philipp Hennig, Martin Kiefel

12:05

Efficient and Practical Stochastic Subgradient Descent for Nuclear Norm Regularization

Haim Avron, Satyen Kale, Shiva Kasiviswanathan, Vikas Sindhwani

June 27

Session 1B — Reinforcement learning 1

chair David Silver, room AT LT 5

10:30

Policy Gradients with Variance Related Risk Criteria

Dotan Di Castro, Aviv Tamar, Shie Mannor

11:30

Approximate Modified Policy Iteration

Bruno Scherrer, Victor Gabillon, Mohammad Ghavamzadeh, Matthieu Geist

11:50

A Dantzig Selector Approach to Temporal Difference Learning

Matthieu Geist, Bruno Scherrer, Alessandro Lazaric, Mohammad Ghavamzadeh

11:55

Linear Off-Policy Actor-Critic

Thomas Degris, Martha White, Richard Sutton

12:05

Bounded Planning in Passive POMDPs

Roy Fox, Naftali Tishby

June 27

Session 1C — Neural networks and deep learning 1

chair Marc'Aurelio Ranzato, room AT LT 1

10:30

Scene parsing with Multiscale Feature Learning, Purity Trees, and Optimal Covers

Clément Farabet, Camille Couprie, Laurent Najman, Yann LeCun

10:50

A Generative Process for Contractive Auto-Encoders

Salah Rifai, Yann Dauphin, Pascal Vincent, Yoshua Bengio

11:10

Deep Lambertian Networks

Yichuan Tang, Ruslan Salakhutdinov, Geoffrey Hinton

11:30

Deep Mixtures of Factor Analysers

Yichuan Tang, Ruslan Salakhutdinov, Geoffrey Hinton

11:55

Estimating the Hessian by Back-propagating Curvature

James Martens, Ilya Sutskever, Kevin Swersky

12:00

Training Restricted Boltzmann Machines on Word Observations

George Dahl, Ryan Adams, Hugo Larochelle

June 27

Session 1D — Structured output prediction

chair David McAllester, room AT LT 2

10:30

Learning to Identify Regular Expressions that Describe Email Campaigns

Paul Prasse, Christoph Sawade, Niels Landwehr, Tobias Scheffer

10:50

Efficient Structured Prediction with Latent Variables for General Graphical Models

Alexander Schwing, Tamir Hazan, Marc Pollefeys, Raquel Urtasun

11:10

Output Space Search for Structured Prediction

Janardhan Rao Doppa, Alan Fern, Prasad Tadepalli

11:50

Modeling Latent Variable Uncertainty for Loss-based Learning

M. Pawan Kumar, Ben Packer, Daphne Koller

June 27

Session 2A — Kernel methods 1

chair Arthur Gretton, room AT LT 4

16:00

On the Size of the Online Kernel Sparsification Dictionary

Yi Sun, Faustino Gomez, Juergen Schmidhuber

16:20

Improved Nystrom Low-rank Decomposition with Priors

Kai Zhang, Liang Lan, Jun Liu, andreas Rauber

17:00

A Binary Classification Framework for Two-Stage Multiple Kernel Learning

Abhishek Kumar, Alexandru Niculescu-Mizil, Koray Kavukcuoglu, Hal Daume III

17:20

Multiple Kernel Learning from Noisy Labels by Stochastic Programming

Tianbao Yang, Mehrdad Mahdavi, Rong Jin, Lijun Zhang, Yang Zhou,

17:25

Subgraph Matching Kernels for Attributed Graphs

Nils Kriege, Petra Mutzel

17:30

Fast Computation of Subpath Kernel for Trees

Daisuke Kimura, Hisashi Kashima

17:35

Hypothesis testing using pairwise distances and associated kernels

Dino Sejdinovic, Arthur Gretton, Bharath Sriperumbudur, Kenji Fukumizu

June 27

Session 2B — Reinforcement learning 2

chair Geoff Gordon, room AT LT 5

16:00

No-Regret Learning in Extensive-Form Games with Imperfect Recall

Marc Lanctot, Richard Gibson, Neil Burch, Michael Bowling

16:20

Near-Optimal BRL using Optimistic Local Transitions

Mauricio Araya, Olivier Buffet, Vincent Thomas

17:00

Monte Carlo Bayesian Reinforcement Learning

Yi Wang, Kok Sung Won, David Hsu, Wee Sun Lee

June 27

Session 2C — Gaussian processes

chair Ryan Adams, room AT LT 1

16:00

Gaussian Process Regression Networks

Andrew Wilson, David A. Knowles, Zoubin Ghahramani

17:00

Gaussian Process Quantile Regression using Expectation Propagation

Alexis Boukouvalas, Remi Barillec, Dan Cornford

17:20

Residual Components Analysis

Alfredo Kalaitzis, Neil Lawrence

17:25

Manifold Relevance Determination

Andreas Damianou, Carl Ek, Michalis Titsias, Neil Lawrence

June 27

Session 2D — Statistical methods

chair Lawrence Carin, room AT LT 2

16:00

Lognormal and Gamma Mixed Negative Binomial Regression

Mingyuan Zhou, Lingbo Li, David Dunson, Lawrence Carin

16:20

Group Sparse Additive Models

Junming Yin, Xi Chen, eric xing

16:40

Variance Function Estimation in High-dimensions

Mladen Kolar, James Sharpnack

17:00

Sparse Additive Functional and Kernel CCA

Sivaraman Balakrishnan, Kriti Puniyani, John Lafferty

17:30

Is margin preserved after random projection?

Qinfeng Shi, Chunhua Shen, Rhys Hill, Anton van den Hengel

June 28

Session 3A — Optimization algorithms 2

chair Tong Zhang, room AT LT 4

8:40

A Discrete Optimization Approach for Supervised Ranking with an Application to Reverse-Engineering Quality Ratings

Allison Chang, Cynthia Rudin, Dimitris Bertsimas, Michael Cavaretta, Robert Thomas, Gloria Chou

9:40

Randomized Smoothing for (Parallel) Stochastic Optimization

John Duchi, Martin Wainwright, Peter Bartlett

June 28

Session 3B — Clustering 1

chair Shai Ben-David, room AT LT 5

8:40

Demand-Driven Clustering in Relational Domains for Predicting Adverse Drug Events

Jesse Davis, Vitor Santos Costa, Elizabeth Berg, David Page, Peggy Peissig, Michael Caldwell

9:20

An Iterative Locally Linear Embedding Algorithm

Deguang Kong, Chris H.Q. Ding

9:40

Robust Multiple Manifold Structure Learning

Dian Gong, Xuemei Zhao, Gerard Medioni

9:45

A Split-Merge Framework for Comparing Clusterings

Qiaoliang Xiang, Qi Mao, Kian Ming Chai, Hai Leong Chieu, Ivor Tsang, Zhenddong Zhao

9:50

On the Difficulty of Nearest Neighbor Search

Junfeng He, Sanjiv Kumar, Shih-Fu Chang

June 28

Session 3C — Privacy, Anonymity, and Security

chair Tobias Scheffer, room AT LT 1

8:40

Bayesian Watermark Attacks

Ivo Shterev, David Dunson

9:00

Poisoning Attacks against Support Vector Machines

Battista Biggio, Blaine Nelson, Pavel Laskov

9:40

Finding Botnets Using Minimal Graph Clusterings

Peter Haider, Tobias Scheffer

June 28

Session 3D — Ranking and Preference Learning

chair Balazs Kegl, room AT LT 2

8:40

Incorporating Domain Knowledge in Matching Problems via Harmonic Analysis

Deepti Pachauri, Maxwell Collins, Vikas SIngh

9:00

Consistent Multilabel Ranking through Univariate Losses

Krzysztof Dembczyński, Wojciech Kotłowski, Eyke Huellermeier

9:20

Predicting Consumer Behavior in Commerce Search

Or Sheffet, Nina Mishra, Samuel Ieong

9:40

Adaptive Regularization for Similarity Measures

Koby Crammer, Gal Chechik

9:45

Online Structured Prediction via Coactive Learning

Pannaga Shivaswamy, Thorsten Joachims

June 28

Session 3E — Nonparametric Bayesian inference

chair Sharon Goldwater, room AT LT 3

8:40

Factorized Asymptotic Bayesian Hidden Markov Models

Ryohei Fujimaki, Kohei Hayashi

9:00

An Infinite Latent Attribute Model for Network Data

Konstantina Palla, David A. Knowles, Zoubin Ghahramani

9:20

The Nonparametric Metadata Dependent Relational Model

Dae Il Kim, Michael Hughes, Erik Sudderth

9:50

Modeling Images using Transformed Indian Buffet Processes

KE ZHAI, Yuening Hu, Jordan Boyd-Graber, Sinead Williamson

9:55

A Topic Model for Melodic Sequences

Athina Spiliopoulou, Amos Storkey

June 28

Session 4A — Feature selection and dimensionality reduction 1

chair Kilian Weinberger, room AT LT 4

10:30

Discovering Support and Affiliated Features from Very High Dimensions

Yiteng Zhai, Mingkui Tan, Ivor Tsang, Yew Soon Ong

11:50

Fast Prediction of New Feature Utility

Hoyt Koepke, Mikhail Bilenko

June 28

Session 4B — Online learning 1

chair Satyen Kale, room AT LT 5

10:30

An Online Boosting Algorithm with Theoretical Justifications

Shang-Tse Chen, Hsuan-Tien Lin, Chi-Jen Lu

10:50

An adaptive algorithm for finite stochastic partial monitoring

Gabor Bartok, Navid Zolghadr, Csaba Szepesvari

11:10

Online Alternating Direction Method

Huahua Wang, Arindam Banerjee

11:30

Projection-free Online Learning

Elad Hazan, Satyen Kale

11:50

PAC Subset Selection in Stochastic Multi-armed Bandits

Shivaram Kalyanakrishnan, Ambuj Tewari, Peter Auer, Peter Stone

11:55

On Local Regret

Michael Bowling, Martin Zinkevich

12:00

Exact Soft Confidence-Weighted Learning

Steven C.H. Hoi, Jialei Wang, Peilin Zhao

12:05

Compact Hyperplane Hashing with Bilinear Functions

Wei Liu, Jun Wang, Yadong Mu, Sanjiv Kumar, Shih-Fu Chang

June 28

Session 4C — Supervised learning 1

chair Cynthia Rudin, room AT LT 1

10:50

Unachievable Region in Precision-Recall Space and Its Effect on Empirical Evaluation

Kendrick Boyd, Jesse Davis, David Page, Vitor Santos Costa

11:10

The Big Data Bootstrap

Ariel Kleiner, Ameet Talwalkar, Purnamrita Sarkar, Michael Jordan

11:30

Robust Classification with Adiabatic Quantum Optimization

Vasil Denchev, Nan Ding, SVN Vishwanathan, Hartmut Neven

11:50

Nonparametric Link Prediction in Dynamic Networks

Purnamrita Sarkar, Deepayan Chakrabarti, Michael Jordan

11:55

A Unified Robust Classification Model

Akiko Takeda, Hiroyuki Mitsugi, Takafumi Kanamori

12:00

Maximum Margin Output Coding

Yi Zhang, Jeff Schneider

12:05

Structured Learning from Partial Annotations

Xinghua Lou, Fred Hamprecht

June 28

Session 4D — Transfer and Multi-Task Learning

chair Jenn Wortman Vaughan, room AT LT 2

10:30

Marginalized Denoising Autoencoders for Domain Adaptation

Minmin Chen, Zhixiang Xu, Kilian Weinberger, Fei Sha

11:55

A Complete Analysis of the l_1,p Group-Lasso

Julia Vogt, Volker Roth

12:05

Cross-Domain Multitask Learning with Latent Probit Models

Shaobo Han, Xuejun Liao, Lawrence Carin

June 28

Session 4E — Graphical models

chair Matthias Seeger, room AT LT 3

10:30

High Dimensional Semiparametric Gaussian Copula Graphical Models

Han Liu, Fang Han, Ming Yuan, John Lafferty, Larry Wasserman

11:30

Anytime Marginal MAP Inference

Denis Maua, Cassio De Campos

11:55

LPQP for MAP: Putting LP Solvers to Better Use

Patrick Pletscher, Sharon Wulff

12:05

Smoothness and Structure Learning by Proxy

Benjamin Yackley, Terran Lane

June 28

Session 5A — Learning theory

chair Daniel Hsu, room AT LT 4

16:00

Linear Regression with Limited Observation

Elad Hazan, Tomer Koren

16:20

Optimizing F-measure: A Tale of Two Approaches

Ye Nan, Kian Ming Chai, Wee Sun Lee, Hai Leong Chieu

16:40

Conditional mean embeddings as regressors

Steffen Grunewalder, Guy Lever, Arthur Gretton, Luca Baldassarre, Sam Patterson, Massi Pontil

17:20

Tighter Variational Representations of f-Divergences via Restriction to Probability Measures

Avraham Ruderman, Mark Reid, Darío García-García, James Petterson

17:25

Agglomerative Bregman Clustering

Matus Telgarsky, Sanjoy Dasgupta

17:30

The Convexity and Design of Composite Multiclass Losses

Mark Reid, Robert Williamson, Peng Sun

17:35

Minimizing The Misclassification Error Rate Using a Surrogate Convex Loss

Shai Ben-David, David Loker, Nathan Srebro, Karthik Sridharan

June 28

Session 5B — Online learning 2

chair Csaba Szepesvari, room AT LT 5

16:00

Hierarchical Exploration for Accelerating Contextual Bandits

Yisong Yue, Sue Ann Hong, Carlos Guestrin

16:40

Decoupling Exploration and Exploitation in Multi-Armed Bandits

Orly Avner, Shie Mannor, Ohad Shamir

17:00

Learning the Experts for Online Sequence Prediction

Elad Eban, Aharon Birnbaum, Shai Shalev-Shwartz, Amir Globerson

17:20

Plug-in martingales for testing exchangeability on-line

Valentina Fedorova, Alex Gammerman, Ilia Nouretdinov, Volodya Vovk

June 28

Session 5C — Neural networks and deep learning 2

chair Yoshua Bengio, room AT LT 1

16:00

Large-Scale Feature Learning With Spike-and-Slab Sparse Coding

Ian Goodfellow, Aaron Courville, Yoshua Bengio

16:40

Building high-level features using large scale unsupervised learning

Quoc Le, Marc'Aurelio Ranzato, Rajat Monga, Matthieu Devin, Greg Corrado, Kai Chen, Jeff Dean, Andrew Ng

17:00

On multi-view feature learning

Roland Memisevic

17:20

Learning to Label Aerial Images from Noisy Data

Volodymyr Mnih, Geoffrey Hinton

June 28

Session 5D — Sparsity and compressed sensing

chair Mahdi Milani Fard, room AT LT 2

16:20

Estimation of Simultaneously Sparse and Low Rank Matrices

Pierre-André Savalle, Emile Richard, Nicolas Vayatis

16:40

Multi-level Lasso for Sparse Multi-task Regression

Aurelie Lozano, Grzegorz Swirszcz

17:20

Learning Efficient Structured Sparse Models

Alex Bronstein, Pablo Sprechmann, Guillermo Sapiro

June 28

Session 5E — Latent-Variable Models and Topic Models

chair Jordan Boyd-Graber, room AT LT 3

16:20

Canonical Trends: Detecting Trend Setters in Web Data

Felix Biessmann, Jens-Michalis Papaioannou, Mikio Braun, Andreas Harth

17:00

Sparse stochastic inference for latent Dirichlet allocation

David Mimno, Matt Hoffman, David Blei

17:30

Capturing topical content with frequency and exclusivity

Jonathan Bischof, Edoardo Airoldi

June 29

Session 6A — Semi-supervised learning

chair Maria Florina Balcan, room AT LT 4

9:20

A Simple Algorithm for Semi-supervised Learning with Improved Generalization Error Bound

Ming Ji, Tianbao Yang, Binbin Lin, Rong Jin, Jiawei Han

9:40

Information-theoretic Semi-supervised Metric Learning via Entropy Regularization

Gang Niu, Bo Dai, Makoto Yamada, Masashi Sugiyama

9:50

Using CCA to improve CCA: A new spectral method for estimating vector models of words

Paramveer Dhillon, Jordan Rodu, Dean Foster, Lyle Ungar

June 29

Session 6B — Reinforcement learning 3

chair Ron Parr, room AT LT 5

8:40

Compositional Planning Using Optimal Option Models

David Silver, Kamil Ciosek

9:00

Learning Parameterized Skills

Bruno Da Silva, George Konidaris, Andrew Barto

9:20

Safe Exploration in Markov Decision Processes

Teodor Mihai Moldovan, Pieter Abbeel

9:40

Modelling transition dynamics in MDPs with RKHS embeddings

Steffen Grunewalder, Guy Lever, Luca Baldassarre, Massi Pontil, Arthur Gretton

June 29

Session 6C — Applications

chair Tom Dietterich, room AT LT 1

8:40

A Joint Model of Language and Perception for Grounded Attribute Learning

Cynthia Matuszek, Nicholas FitzGerald, Luke Zettlemoyer, Liefeng Bo, Dieter Fox

9:00

Predicting Manhole Events in New York City

Cynthia Rudin, Rebecca Passonneau, Axinia Radeva, Steve Ierome, Delfina Isaac

9:40

Learning Object Arrangements in 3D Scenes using Human Context

Yun Jiang, Marcus Lim, Ashutosh Saxena

June 29

Session 6D — Time-Series Analysis

chair Naoki Abe, room AT LT 2

9:00

Improved Estimation in Time Varying Models

Doina Precup, Philip Bachman

9:20

Bayesian Conditional Cointegration

Chris Bracegirdle, David Barber

June 29

Session 6E — Graph-based learning

chair Charles Elkan, room AT LT 3

8:40

Shortest path distance in random k-nearest neighbor graphs

Morteza Alamgir, Ulrike von Luxburg

9:00

Submodular Inference of Diffusion Networks from Multiple Trees

Manuel Gomez Rodriguez, Bernhard Schölkopf

9:20

Influence Maximization in Continuous Time Diffusion Networks

Manuel Gomez Rodriguez, Bernhard Schölkopf

9:40

Latent Multi-group Membership Graph Model

Myunghwan Kim, Jure Leskovec

9:45

The Most Persistent Soft-Clique in a Set of Sampled Graphs

Novi Quadrianto, Chao Chen, Christoph Lampert

June 29

Session 7A — Invited Applications

chair Samy Bengio, room AT LT 4

10:50

Data-driven Web Design

Ranjitha Kumar, Jerry Talton, Salman Ahmad, Scott Klemmer

11:30

Exemplar-SVMs for Visual Object Detection, Label Transfer and Image Retrieval

Tomasz Malisiewicz, Abhinav Shrivastava, Abhinav Gupta, Alexei Efros

11:50

Learning Force Control Policies for Compliant Robotic Manipulation

Mrinal Kalakrishnan, Ludovic Righetti, Peter Pastor, Stefan Schaal

June 29

Session 7B — Reinforcement learning 4

chair Michael Bowling, room AT LT 5

10:50

Greedy Algorithms for Sparse Reinforcement Learning

Christopher Painter-Wakefield, Ronald Parr

11:10

On the Sample Complexity of Reinforcement Learning with a Generative Model

Mohammad Gheshlaghi Azar, Remi Munos, Bert Kappen

June 29

Session 7C — Clustering 2

chair Raquel Urtasun, room AT LT 1

10:30

On causal and anticausal learning

Bernhard Schoelkopf, Dominik Janzing, Jonas Peters, Eleni Sgouritsa, Kun Zhang, Joris Mooij

11:10

Approximate Principal Direction Trees

Mark McCartin-Lim, Andrew McGregor, Rui Wang

11:30

Clustering using Max-norm Constrained Optimization

Ali Jalali, Nathan Srebro

11:50

Efficient Active Algorithms for Hierarchical Clustering

Akshay Krishnamurthy, Sivaraman Balakrishnan, Min Xu, Aarti Singh

12:00

Groupwise Constrained Reconstruction for Subspace Clustering

Ruijiang Li, Bin Li, Cheng Jin, Xiangyang Xue

June 29

Session 7D — Supervised learning 2

chair Leon Bottou, room AT LT 2

10:30

Total Variation and Euler's Elastica for Supervised Learning

Tong Lin, Hanlin Xue, Ling Wang, Hongbin Zha

10:50

Flexible Modeling of Latent Task Structures in Multitask Learning

Alexandre Passos, Piyush Rai, Jacques Wainer, Hal Daume III

11:10

Fast classification using sparse decision DAGs

Robert Busa-Fekete, Djalel Benbouzid, Balazs Kegl

11:30

An Efficient Approach to Sparse Linear Discriminant Analysis

Luis Francisco Sánchez Merchante, Yves Grandvalet, Gérrad Govaert

11:50

Sequential Nonparametric Regression

Haijie Gu, John Lafferty

11:55

The Landmark Selection Method for Multiple Output Prediction

Krishnakumar Balasubramanian, Guy Lebanon

June 29

Session 7E — Probabilistic Models

chair Erik Sudderth, room AT LT 3

10:30

Local Loss Optimization in Operator Models: A New Insight into Spectral Learning

Borja Balle, Ariadna Quattoni, Xavier Carreras

10:50

Discriminative Probabilistic Prototype Learning

Edwin Bonilla, Antonio Robles-Kelly

11:10

Isoelastic Agents and Wealth Updates in Machine Learning Markets

Amos Storkey, Jono Millin, Krzysztof Geras

11:30

Evaluating Bayesian and L1 Approaches for Sparse Unsupervised Learning

Shakir Mohamed, Katherine Heller, Zoubin Ghahramani

11:50

Nonparametric variational inference

Samuel Gershman, Matt Hoffman, David Blei

12:05

Predicting accurate probabilities with a ranking loss

Aditya Menon, Xiaoqian Jiang, Shankar Vembu, Charles Elkan, Lucila Ohno-Machado

June 29

Session 8A — Kernel methods 2

chair Mario Marchand, room AT LT 4

14:00

Copula-based Kernel Dependency Measures

Barnabas Poczos, Zoubin Ghahramani, Jeff Schneider

14:20

The Kernelized Stochastic Batch Perceptron

Andrew Cotter, Shai Shalev-Shwartz, Nathan Srebro

14:40

Fast Bounded Online Gradient Descent Algorithms for Scalable Kernel-Based Online Learning

Steven C.H. Hoi, Jialei Wang, Peilin Zhao, Rong Jin, Pengcheng Wu

15:00

Distributed Tree Kernels

Fabio Massimo Zanzotto, Lorenzo Dell'Arciprete

15:20

Analysis of Kernel Mean Matching under Covariate Shift

Yaoliang Yu, Csaba Szepesvari

June 29

Session 8B — Active and cost-sensitive learning

chair Andreas Krause, room AT LT 5

14:00

The Greedy Miser: Learning under Test-time Budgets

Zhixiang Xu, Kilian Weinberger, Olivier Chapelle

14:40

Comparison-Based Learning with Rank Nets

Amin Karbasi, Stratis Ioannidis, laurent Massoulie

15:00

Bayesian Optimal Active Search and Surveying

Roman Garnett, Yamuna Krishnamurthy, Xuehan Xiong, Jeff Schneider, Richard Mann

15:20

Hybrid Batch Bayesian Optimization

Javad Azimi, Ali Jalali, Xiaoli Zhang-Fern

15:25

Batch Active Learning via Coordinated Matching

Javad Azimi, Alan Fern, Xiaoli Zhang-Fern, Glencora Borradaile, Brent Heeringa

15:30

Bayesian Nonexhaustive Learning for Online Discovery and Modeling of Emerging Classes

Murat Dundar, Ferit Akova, Alan Qi, Bartek Rajwa

June 29

Session 8C — Feature selection and dimensionality reduction

chair Andrea Danyluk, room AT LT 1

14:00

Robust PCA in High-dimension: A Deterministic Approach

Jiashi Feng, Huan Xu, Shuicheng Yan

14:20

Communications Inspired Linear Discriminant Analysis

Minhua Chen, William Carson, Miguel Rodrigues, Lawrence Carin, Robert Calderbank

14:40

Regularizers versus Losses for Nonlinear Dimensionality Reduction: A Factored View with New Convex Relaxations

James Neufeld, Yaoliang Yu, Xinhua Zhang, Ryan Kiros, Dale Schuurmans

15:00

Fast Training of Nonlinear Embedding Algorithms

Max Vladymyrov, Miguel Carreira-Perpinan

15:20

Sparse Support Vector Infinite Push

Alain Rakotomamonjy

15:25

Adaptive Canonical Correlation Analysis Based On Matrix Manifolds

Florian Yger, Maxime Berar, Gilles Gasso, Alain Rakotomamonjy

15:30

Fast approximation of matrix coherence and statistical leverage

Michael Mahoney, Petros Drineas, Malik Magdon-Ismail, David Woodruff

15:35

Feature Selection via Probabilistic Outputs

Andrea Danyluk, Nicholas Arnosti

June 29

Session 8D — Recommendation and Matrix Factorization

chair Thorsten Joachims, room AT LT 2

14:20

Gap Filling in the Plant Kingdom—Trait Prediction Using Hierarchical Probabilistic Matrix Factorization

Hanhuai Shan, Jens Kattge, Peter Reich, Arindam Banerjee, Franziska Schrodt, Markus Reichstein

15:00

Latent Collaborative Retrieval

Jason Weston, Chong Wang, Ron Weiss, Adam Berenzweig

15:30

Active Learning for Matching Problems

Laurent Charlin, Rich Zemel, Craig Boutilier

June 29

Session 8E — Graphical models

chair Ricardo Silva, room AT LT 3

14:00

Variational Bayesian Inference with Stochastic Search

John Paisley, David Blei, Michael Jordan

14:40

A Generalized Loop Correction Method for Approximate Inference in Graphical Models

Siamak Ravanbakhsh, Chun-Nam Yu, Russell Greiner

June 29

Plenary Session

room AT LT2 LT4 LT5

17:10

Machine Learning that Matters

Kiri Wagstaff