
A Generative Process for Sampling Contractive Auto-Encoders

Salah Rifai(1) rifaisal@iro.umontreal.ca
Yoshua Bengio(1) bengioy@iro.umontreal.ca
Yann N. Dauphin(1) dauphiya@iro.montreal.ca
Pascal Vincent(1) vincentp@iro.umontreal.ca
(1) Dept. IRO, Université de Montréal. Montréal (QC), H3C 3J7, Canada

Abstract

The contractive auto-encoder learns a rep-
resentation of the input data that captures
the local manifold structure around each data
point, through the leading singular vectors
of the Jacobian of the transformation from
input to representation. The corresponding
singular values specify how much local varia-
tion is plausible in directions associated with
the corresponding singular vectors, while re-
maining in a high-density region of the input
space. This paper proposes a procedure for
generating samples that are consistent with
the local structure captured by a contrac-
tive auto-encoder. The associated stochas-
tic process defines a distribution from which
one can sample, and which experimentally
appears to converge quickly and mix well be-
tween modes, compared to Restricted Boltz-
mann Machines and Deep Belief Networks.
The intuitions behind this procedure can also
be used to train the second layer of contrac-
tion that pools lower-level features and learns
to be invariant to the local directions of vari-
ation discovered in the first layer. We show
that this can help learn and represent invari-
ances present in the data and improve classi-
fication error.

1. Introduction

A central objective of machine learning is to gener-
alize from training examples to new configurations of
the observed variables, and in the most general setup
this means deciding how to redistribute the probabil-

Appearing in Proceedings of the 29 th International Confer-
ence on Machine Learning, Edinburgh, Scotland, UK, 2012.
Copyright 2012 by the author(s)/owner(s).

ity mass associated with each training example from
the empirical distribution. Classical non-parametric
density estimation does this by convolving the empir-
ical distribution with a smoothing kernel such as the
Gaussian (giving rise to the Parzen density estimator).
This spreads each point mass into the nearby volume
surrounding each training point, but unfortunately it
does so isotropically (in the same way in all directions
around each training point). This means that if the
true density tends to concentrate near low-dimensional
manifolds (this is called the manifold hypothesis (Cay-
ton, 2005; Narayanan and Mitter, 2010; Rifai et al.,
2011a)), then a lot of densely packed training exam-
ples will be required to achieve a high model density
near the manifold and a low model density away from
it.

Whereas Principal Components Analysis (PCA) dis-
covers a linear manifold near which the density
may concentrate, Non-Linear Manifold Learning algo-
rithms (Schölkopf et al., 1998; Roweis and Saul, 2000;
Tenenbaum et al., 2000) attempt to discover the struc-
ture of manifolds (which may be non-linear) near which
the true density concentrates. In some cases a mani-
fold learning algorithm can be generalized to obtain a
model that tells us (explicitly or implicitly) how to al-
locate probability mass everywhere, and not just iden-
tify the manifold. For example, PCA corresponds to
a Gaussian model, where the variances in directions
orthogonal to the manifold are small and constant
(across all these directions), and this can be extended
to non-linear structures with a mixture model (Tip-
ping and Bishop, 1999) or the kernel trick (Schölkopf
et al., 1998).

In many manifold learning algorithms, the local shape
of the manifold is specified by a local basis which in-
dicates the plausible directions of variation, i.e., the
tangent plane at any point on the manifold. Different
algorithms propose different ways of stitching these lo-



A Generative Process for Sampling Contractive Auto-Encoders

cal planes or local pancakes in order to construct a
global manifold structure or a global density. How-
ever, a potentially serious limitation of most manifold
learning algorithms is that they are based on local gen-
eralization: they infer these local tangent planes based
mostly on the training examples in the neighborhood of
the point of interest. As discussed in Bengio and Mon-
perrus (2005) and Bengio et al. (2006b), this raises a
curse of dimensionality issue: if the manifold of in-
terest has many ups and downs then the number of
examples required to capture the manifold increases
exponentially with manifold dimension and the man-
ifold curvature. The model cannot generalize in an
up or down of the manifold for which there are no
examples to map out its variations. A first non-linear
manifold learning algorithm with non-local generaliza-
tion was proposed by Bengio et al. (2006a), stimulat-
ing the work presented here, which also follows up on
more recent work in the area of Deep Learning (Hinton
et al., 2006; Bengio, 2009), more specifically the Con-
tractive Auto-Encoder (CAE) (Rifai et al., 2011b;a),
described in more detail in the next section. The CAE
is a representation-learning algorithm which also cap-
tures local manifold structure and has the potential
for non-local generalization.

The first main contribution of this paper (section 3) is
a novel way to use the CAE to construct a generative
procedure which implicitly specifies a density concen-
trating near the captured manifolds. The second main
contribution of this paper (section 4) is inspired by
the ideas of the first and consists in a novel way to
train a pooling layer on top of the features learned by
a CAE, so as to make them invariant to the local di-
rections of variation captured by the lower-level CAE
features. Another contribution of this paper regards
the training of a multi-layer CAE, in particular us-
ing the above trained pooling layer, whereas previous
CAE papers involved only single-layer CAEs, possibly
stacked to get deeper representations. Section 5 shows
results from the proposed generative process and from
the invariance-seeking pooling algorithm for the CAE,
illustrating the advantages brought by these two con-
tributions.

2. Characterizing a data manifold with
a Contractive Auto-Encoder

Deep Learning algorithms learn a representation of
input data x, which is typically used either to con-
struct a classifier1 or in order to capture the structure
of P (x). They are deep if these representations have

1or other supervised predictors such as P (y|x) for some
target variable y

multiple levels, and the number of levels is a hyper-
parameter that can be chosen in a data-dependent
way. Typically, higher levels are defined in terms of
lower levels and are expected to represent more ab-
stract features, e.g., better capturing structure present
in the input distribution such as invariance (Goodfel-
low et al., 2009) or manifold structure. See Bengio
(2009) for a review of Deep Learning algorithms. A
major breakthrough in this area occurred in 2006 (Hin-
ton et al., 2006) with the successful idea that deep
architectures could be trained by stacking single-level
unsupervised representation learning algorithms such
as the Restricted Boltzmann Machine (RBM) or auto-
encoder and sparse coding variants.

The Contractive Auto-Encoder (CAE) is an unsuper-
vised feature learning algorithm that has been success-
fully applied in the training of deep networks, i.e., CAE
layers can be stacked to form deeper representations.
Its parametrization is essentially the same as that of a
Restricted Boltzmann Machine, but contrary to RBMs
its training procedure is deterministic, and consists in
minimizing, through gradient descent, a simple objec-
tive that can be efficiently computed analytically and
exactly.

In this section, we briefly review the CAE algorithm,
its interpretation as modeling a data manifold, and
how one can use a trained CAE to extract the local
tangent space to that manifold at a point.

2.1. The Contractive Auto-Encoder training
objective

Let us briefly introduce the notation that we will be
using throughout, and formalize the operations of the
CAE algorithm, following Rifai et al. (2011b).

From an input x ∈ [0, 1]d, a k-dimensional feature vec-
tor is computed as a hidden layer, e.g.,

h = f(x) = s(Wx+ bh), (1)

where W ∈ IRk×d and bh ∈ IRk are parameters of
the model, and s is the element-wise logistic sigmoid
s(z) = 1

1+e−z . From hidden representation h, a recon-
struction of x is obtained as

r = g(f(x)) = s(WT f(x) + br),

where br ∈ IRd is the reconstruction bias vector. Al-
though the encoder f(·) and decoder g(·) can them-
selves have multiple layers, previous work on the CAE
has focused on training only single-layer CAEs (and
then stacking them to form deeper representations).

A reconstruction loss L(x, r) measures how well the
input is reconstructed from the hidden representation.



A Generative Process for Sampling Contractive Auto-Encoders

Following Rifai et al. (2011b), we will be using a cross-
entropy loss:

L(x, r) = −
d∑

i=1

xi log(ri) + (1− xi) log(1− ri).

The set of parameters of this model is θ = {W, bh, br}.
The training objective being minimized in a traditional
auto-encoder is simply the average reconstruction er-
ror over a training set D. The Contractive Auto-
Encoder adds a regularization term to this objective,
that penalizes the sensitivity of the features to the in-
put, measured as the Frobenius norm of the Jacobian
matrix J(x) = ∂f(x)

∂x .

In summary, the parameters θ of the CAE are learned
by minimizing:

JCAE(θ;D) =
∑
x∈D

(
L(x, g(f(x))) + λ‖J(x)‖2

)
(2)

where λ is a non-negative regularization hyper-
parameter that controls how strongly the norm of the
Jacobian is penalized.

2.2. How the CAE models a data manifold

A useful non-parametric modeling hypothesis for high
dimensional data with a complicated structure, such
as natural images or sounds, is the so-called mani-
fold hypothesis (Cayton, 2005; Narayanan and Mitter,
2010; Rifai et al., 2011a). It hypothesizes that, while
in its raw representation such data may appear to live
in a high dimensional space, in reality its probability
density is likely to be relatively high only along stripes
of a much lower-dimensional non-linear sub-manifold,
embedded in this high-dimensional Euclidean space2.
This should not be taken to mean that all data must
lie strictly on said sub-manifold (that we will from now
on simply call manifold), but merely that the probabil-
ity density is expected to decrease very rapidly when
moving away from it. Since this manifold is thought to
support the high data density regions, capturing and
exploiting its precise structure and location within the
high dimensional space is viewed as a key to better
generalization.

To interpret the CAE from this perspective, as is done
in Rifai et al. (2011b), it is useful to think of an au-
toencoder as projecting an input point x onto a low di-
mensional manifold, and of the hidden representation

2What we will refer to as “the manifold”, does not have
to be a single connected sub-manifold of fixed dimension-
ality, but more generally a set of possibly disconnected
stripes of varying dimensionality.

as the coordinates of that projection in a coordinate
system within the manifold. One may view this as a
non-linear generalization of PCA, where PCA would
correspond to projecting onto a linear sub-manifold.
Let us consider a point x and the manifold-coordinates
of its projection (i.e. its hidden representation h(x)),
and how they change as we slightly move x. For move-
ments “parallel” to the manifold (i.e. in directions
within the tangent space at the projection), the pro-
jection and thus h will follow suit. Ideally, small move-
ments “orthogonal” to the manifold however should
not change the projection or h.

Now CAEs’ contractive penalty pressures the hidden
representation not to change when moving x, whatever
the direction (it is an isotropic pressure). But this is
counterbalanced in the CAE training criterion by the
need to correctly reconstruct training points, so that
h has to be sensitive at least to moves in directions
that lead to other likely points (such as training set
neighbors). As a result, of this trade-off, the CAE’s
hidden representation will learn, at training points, to
be sensitive only to movements alongside the manifold
of high density (i.e. spanning the tangent space to the
manifold), because these can yield points it must be
able to reconstruct well, while sensitivity to all other
directions (those orthogonal to the manifold) will have
been shrunk.

This interpretation is supported in Rifai et al. (2011b)
by an empirical analysis of the sensitivity of f(x) to
input directions: a Singular Value Decomposition of
Jacobian J(x) reveals that the singular values spec-
trum has a rapidly decreasing shape, with but a few
large singular values. This shows that, indeed, the hid-
den representation learned to be sensitive to changes
in only a few input-space directions, which is coherent
with the hypothesis of the data concentrating along a
low-dimensional manifold.

Note that while J(x) contains all information to com-
pute the sensitivity of h = f(x) to movements in any
input direction, performing a SVD yields a more di-
rectly informative orthonormal basis of directions, or-
dered from most to least sensitive. The subset of most
sensitive directions in this basis can be interpreted as
spanning the tangent space to the manifold at point
x.

Rifai et al. (2011a) have successfully used these ex-
tracted “tangent” directions in a subsequent super-
vised classification training to encourage class predic-
tion probabilities to be invariant to these directions,
by using the tangent-propagation technique (Simard
et al., 1992).



A Generative Process for Sampling Contractive Auto-Encoders

3. Generating samples along the
manifold

Consider a pretrained CAE with hidden units hi =
fi(x), e.g., computed according to Eq. 1. Consider a
local variation x̂ of x obtained by moving infinitesi-
mally along the tangent plane defined by the CAE at
x, i.e., with greater movement in the directions of the
Jacobian J associated with larger singular values:

x̂ = x+
D∑
i

εi
∂fi(x)
∂x

where εi is a Gaussian perturbation in h-space with
small variance σ2, and the vector ε is isotropic with
ε ∼ N(0, σ2Ik).

We can now calculate the hidden units representation
associated with the perturbed sample x̂:

fj(x̂) = fj

(
x+

D∑
i

εi
∂fi(x)
∂x

)

By using a first order Taylor expansion, taking ad-
vantage of the assumption that σ is small and thus ε
is small, we obtain a movement in the space of h as
follows:

fj

(
x+

D∑
i

εi
∂fi(x)
∂x

)
≈ fj (x)+

D∑
i

εi
∂fi(x)
∂x

T
∂fj(x)
∂x

.

Hence, to first order, when we move x along the direc-
tions captured by the CAE’s Jacobian, it corresponds
to a movement from h = f(x) to h+ JJT ε, where ε is
a small isotropic perturbation. This idea is exploited
in Algorithm 1 below.

Algorithm 1 : Sampling from a CAE.
Let inputs x ∈ [0, 1]d and representations h ∈ [0, 1]k

with encoding function f : [0, 1]d → [0, 1]k from input
space to representation space, and decoding function
g : [0, 1]k → [0, 1]d from representation space back to
input space.
Input: f , g, step size σ and chain length T
Output: Sequence (x1, h1), (x2, h2), . . . , (xT , hT )

Initialize x0 arbitrarily and h0 = f(x0).
for t = 1 to T do

Let Jacobian Jt = ∂f(xt)
∂xt

.
Let ε ∼ N(0, σIk) isotropic Gaussian noise.
Let perturbation ∆h = JtJ

T
t ε.

Let xt = g(ht−1 + ∆h) and ht = f(xt)
end for

If the singular values of J had a sharp drop-off, only
movement on the manifold would be allowed. Further-
more, if the singular value spectrum was constant by

parts (some large constant value for the first m sin-
gular values, and 0 for the remaining ones), and in
the limit where σ → 0, then we claim that Algorithm
1 would do a random walk on the manifold. What
if some singular values are non-zero or if σ > 0? We
would take some steps “off” the manifold. However the
reconstruction step (last step) of the algorithm would
always bring us back towards the manifold (since g
is trained to output values on a set of high-density
points, i.e., the training examples). We show below
that in fact Algorithm 1 defines a stochastic process
that asymptotically generates examples according to
a well defined distribution. Note that the CAE used
to compute J does not have to be a single-layer CAE
(as was the case in earlier CAE papers), and below we
show experimental results with 2-layer CAEs that im-
prove on single-layer CAEs. In that case, J represents
the Jacobian of the top-level layer with respect to the
model’s input.

Theorem: Algorithm 1 defines a stochastic process
generating a sequence h1, h2, . . . that is an ergodic Har-
ris chain with a stationary distribution π, so long as
JtJ

T
t is full rank.

Proof:

Note first that ∆h is a zero-mean Gaussian
with full rank covariance matrix E[∆h∆hT ] =
E[JtJ

T
t εε

TJtJ
T
t ] = JtJ

T
t E[εεT ]JtJ

T
t = σJtJ

T
t JtJ

T
t .

Since ∆h can be anywhere in Rk, so can ht−1 + ∆h.
Let H = {f(g(h)) : h ∈ Rk} the domain reachable in
representation space when starting from anywhere in
representation space and applying the decoder and en-
coder. This is the set in which all ht belong in Algo-
rithm 1. Hence, by definition of H, for any ht ∈ H,
there exists h ∈ Rk such that ht = f(g(h)), and since
there exists δ > 0 such that ∆h can take any value
with probability density p(∆h) > δ so long as ∆h is
in a bounded sphere around the origin, there exists
ht−1 ∈ H such that p(ht|ht−1) > δ.

The sequence of ht’s defines a time-homogeneous Har-
ris chain (a Markov chain with uncountable state) be-
cause it puts probability mass everywhere in H, and it
has a stochastic kernelK s.t. K(u, v) = p(ht+1 = v|ht)
and K(u, V ) = P (ht+1 ⊂ V |ht = u) for a set V . In
order for it to have a stationary distribution π it is
enough to show that it is irreducible, aperiodic and
recurrent, all being true in virtue of the fact that, be-
cause H is a compact set, ∃δ > 0 such that we can
go from any element in H to any element in H in just
one time step with probability greater than δ: we can
go from any region to any region in finite time (ir-
reducibile chain), we can return to a just visited re-
gion (recurrent chain), and we can return to it in any



A Generative Process for Sampling Contractive Auto-Encoders

number of time steps (aperiodic chain). These are the
sufficient conditions for a stationary distribution π to
exist, i.e., such that π(h′) =

∫
K(h′, h)π(h)dh.�

Since the sequence of ht converges in distribution, and
xt = g(ht−1 + ∆h) it can be similarly shown that the
sequence of xt’s also converges in distribution, i.e., that
Algorithm 1 defines a Markov chain with a stationary
distribution in the input space.

4. Efficiently training higher layers to
be locally invariant to leading
manifold directions

Previous work (Rifai et al., 2011a) has shown that the
CAE’s Jacobian characterizes a low dimensional tan-
gent space that e.g., for images might correspond to
small local deformations of the image such as transla-
tions. The CAE is able to learn these automatically
instead of having to provide them as prior knowledge.
Note that from the point of view of classification, the
leading tangent space directions are often conceived as
representing directions to which higher level features
should be mostly invariant (assuming that each class is
associated with a separate manifold, this is the “mani-
fold hypothesis for classification” (Rifai et al., 2011a)).

Now if we follow the standard procedure for greedy
layer-wise pre-training of deep networks, and stack a
second similar CAE layer on top of the features learned
by a first CAE layer, it is unlikely that this second
CAE layer will learn to be highly invariant to these
directions, to which the first layer is, on the contrary,
very sensitive, as it would harm its reconstruction er-
ror. This behavior is to be contrasted with a very
successful element of many deep architectures (espe-
cially for machine vision tasks), which is the addi-
tion of pooling layers in convolutional networks (LeCun
et al., 1989). This powerful approach builds on prior
knowledge of the 2D topology of images to pool the
responses of several nearby receptive fields and yield
units that are invariant, e.g., to small local transla-
tions of the input image. Since CAEs appear able to
capture relevant local tangent directions without using
prior domain knowledge, we wanted to find a way to
automatically learn units that are, similarly, invariant
to the corresponding deformations. This corresponds
to learning a form of pooling (see also Coates and Ng
(2011) for recent work on learning to pool). Hence we
propose a slight addition to the training criterion of
the second layer CAE to achieve this goal.

The normal CAE criterion for learning the second layer

would be

JCAE(θ′) =
∑
x∈D

(
L(f(x), g′(f ′(f(x)))) + λ‖J ′(f(x))‖2

)
where f ′ and g′ are defined similarly to f and g of
the first layer, but using a different set of parameters
θ′ = {W ′, bh′ , br′}, and where J ′ = ∂f ′(h)

∂h .

To encourage representation h′ = f ′(h) = f ′(f(x)) to
be most invariant to the directions captured by the
first layer’s J , we add a further term to the objective:

JCAE+(θ′) =
∑
x∈D

(
L(f(x), g′(f ′(f(x)))) + λ‖J ′(f(x))‖2

+λpE
[
‖f ′(f(x) + J(x)J(x)T ε)− f ′(f(x))

]
‖2
)

where expectation E is over ε ∼ N (0, σ2Ik), and λp ≥
0 is a hyper-parameter. Note that ∆h = J(x)J(x)T ε is
the same as was used in our CAE sampling procedure,
which served as inspiration for this novel criterion. In
practice, we will use a stochastic version of this crite-
rion, where we sample a single ε each time we consider
a different x.

Naturally this addition will likely worsen the achieved
reconstruction error. But it is to be expected that as
more abstract and invariant higher layers are learned,
reconstruction from their representation alone will be
further from the exact input.

The intended effect of this criterion is similar to
Rifai et al. (2011a)’s motivation for using tangent-
propagation with extracted “tangent” directions to
yield class prediction probabilities that are invariant
to these directions. There are however two major dif-
ferences. First the criterion we propose is not tied to
a supervised classification task, as it is local to the
CAE+ layer. It can be viewed instead as a fully unsu-
pervised learning of a form of pooling. Second, it does
not require performing a SVD for each data point, and
is thus much more efficient computationally.

5. Experiments

In this section, we will first evaluate empirically the
sampling procedure defined in Section 3 for a trained
CAE, by comparing it to samples generated by a
trained Restricted Boltzmann Machines (RBM). Sec-
ond we will show empirical results supporting the ef-
fectiveness of learning more invariant units with the
criterion explained in section 4 in terms of classifi-
cation performance. All our experiments were con-
ducted on the MNIST, Caltech 101 Silhouettes, and
the Toronto Face Database (TFD). The latter is
the largest dataset used for facial expression recogni-
tion. The dataset is composed of 100, 000 unlabeled



A Generative Process for Sampling Contractive Auto-Encoders

Figure 1. Samples from models trained on MNIST (left) and TFD (right). Top row: 2-layer CAE using proposed sampling
procedure (Jacobian-based). Middle row: 2-layer DBN using Gibbs sampling. Bottom row: samples obtained by adding
isotropic instead of Jacobian-based Gaussian noise.

images 48x48 pixels which makes it particularly in-
teresting in the context of unsupervised learning al-
gorithms, and 4000 labeled images with 7 facial ex-
pressions. We use the same preprocessing pipeline de-
scribed in Ranzato et al. (2011).

5.1. Evaluating sample generation

We used the sampling procedure proposed in Section
3 to generate samples from two layer stacks of ordi-
nary CAE (denoted CAE-2), that were trained on the
MNIST and TFD datasets. To verify the importance
of basing the stochastic perturbation of the hidden
units on the CAE’s Jacobian, we also run an alter-
native technique where we instead add isotropic noise.
For comparison we also generated samples with Gibbs
samling from a 2-layer Deep Belief Network denoted
DBN-2 (i.e. stacking two RBMs). For the first RBM
layer we used binary visible units for MNIST, and
Gaussian visible units for TFD. Hidden units were
binary in both cases. Figure 1 shows the generated
samples for qualitative visual comparison. Figure 3
shows the evolution of the reconstruction error term,
as we sample using either Jacobian-based or isotropic
hidden unit perturbation. We see that the proposed
procedure is able to produce very diverse samples of
good quality from a trained CAE-2 and that properly
taking into account the Jacobian is critical. Figure 2
shows typical first layer weights (filters) of the CAE-2
used to generate faces in Figure 1.

Figure 2. Typical filters (weight vectors) of the first layer
from the CAE-2 used to produce face samples.
To get a more objective quantitative measure of the
quality of the samples, we resort to a procedure pro-
posed in Breuleux et al. (2011) that can be applied
to compare arbitrary sample generators. It consists in
measuring the log-likelihood of a test set (not used to

Figure 3. Evolution of the reconstruction error term, as
we sample from CAE-2 trained on MNIST, starting from
uniform random pixels (point not shown, way above the
graph). Sampling chain using either Jacobian-based (blue)
or isotropic (green) hidden unit perturbation. Reconstruc-
tion error may be interpreted as an indirect measure of
likelihood.

train the samplers) under the density obtained from
a Parzen-Windows density estimator3 based on 10000
generated samples. Table 1 shows the thus measured
log-likelihoods.

Table 1. Log-Likelihoods from Parzen density estimator
using 10000 samples from each model

DBN-2 CAE-2
TFD 1908.80 ± 65.94 2110.09 ± 49.15
MNIST 137.89 ± 2.11 121.17 ± 1.59

5.2. Evaluating the invariant-feature learning
criterion

Our next series of experiments investigates the effect
of the training criterion proposed in section 4 to learn

3using Gaussian kernels whose width is cross-validated
on a validation set



A Generative Process for Sampling Contractive Auto-Encoders

more invariant second-layer features. The correspond-
ing model is denoted CAE-2p.

How to measure invariance to transformations
known a-priori? In order to validate that the pro-
posed criterion does learn features that are more in-
variant to transformations of interest, we define the
following average normalized sensitivity score, follow-
ing the ideas put forward in Goodfellow et al. (2009).
Let T (x) represent a random deformation of x in di-
rections of variability known a priori, such as affine
transformations of the ink in an image (corresponding
for example to small translations, rotations or scaling
of the content in the image). Then (fi(x)− fi(T (x)))2

measures how sensitive is unit i to T (when large) or
how invariant to it (when small) it is. Following Good-
fellow et al. (2009) we also need some form of normal-
ization to account for features that do not vary much
(maybe even constant): we will normalize the sensi-
tivity of each unit by V [fi], the empirical variance of
fi(x) over the data set. This yields for each unit i and
each input x a normalized sensitivity

si(x) =
(fi(x)− fi(T (x)))2

V [fi]
.

Like Goodfellow et al. (2009), we focus on a fraction of
the units, here the 20% with highest variance, and de-
fine the normalized sensitivity γ(x) of the layer for an
example x as the average of the normalized sensitivity
of these selected units. Finally, the average normal-
ized sensitivity score γ̄ is obtained by computing the
average of γ(x) over the training set. When comparing
layers learned by two different models A and B, statis-
tical significance of the difference between γ̄A and γ̄B

is assessed by computing the standard error4 of the
mean of differences γA(x)− γB(x).

Experimental comparison of sensitivity to
a-priori known deformations. We considered
stochastic affine deformation T (x) for MNIST test-
set digits, controlled by a set of 6 random parame-
ters. These produced slightly shifted, scaled, rotated
or slanted variations of the digits.

Table 2 compares the resulting average normalized
sensitivity score obtained by the second layer learned
by the CAE-2p algorithm, to that obtained for sev-
eral alternative models. These results confirm that
the CAE-2p has learned features that are significantly
more invariant to this kind of deformations, even
though they have not been explicitly used during train-
ing. DBN-2 is a Deep Belief Network obtained by

4This is a slight approximation that considers the V [fi]
as constants.

stacking two RBMs.

Table 2. Average normalized sensitivity (γ̄) of last layer to
affine deformations of MNIST digits. The deformations
were not used in any way during training. Second column
shows difference with CAE-2p together with standard er-
ror of the differences. The proposed CAE-2p appears to
be significantly less sensitive (more invariant) than other
models.

Model γ̄ γ̄ − γ̄CAE−2p

CAE-1 8.23 6.28 ± 0.04
CAE-2 2.84 0.89 ±0.08
DBN-2 2.36 0.41 ±0.025
CAE-2p 1.95 0

Effect of invariant-feature learning on classi-
fication performance. Next we wanted to check
whether the ability to learn more invariant features of
the CAE-2p could translate to better classification per-
formance. Table 3 shows classification performance on
the TFD dataset of a deep neural network pretrained
using several variants of CAEs, and then fine-tuned
on the supervised classification task. For comparison
we also give the best result we obtained with a non-
pretrained multi-layer perceptron (MLP). We see that
the criterion for learning more invariant features used
in CAE-2p yields a significant improvement in classifi-
cation. We get the best performance among methods
that do not explicitly use prior domain knowledge.5

Table 3. Test classification error of several models, trained
on TFD, averaged over 5 folds (reported with standard
deviation).

MLP CAE-1 CAE-2 CAE-2p

26.17 ± 3.06 24.12 ± 1.87 23.73 ± 1.62 21.78 ± 1.04

6. Future Work and Conclusion

We have proposed a converging stochastic process
which exploits what has been learned by a CAE to
generate samples, and we have found that these sam-
ples are not only visually good, they “generalize” well,
in the sense of populating the space in the same ar-
eas where one tends to find test examples. A related
idea has also allowed us to train the second layer of a
2-layer CAE, acting like pooling or invariance-seeking
features, and this has yielded improvements in classi-

5for comparison, Ranzato et al. (2011) reports that
SVM achieve 28.5% and sparse coding : 23.4%. Bet-
ter performance is obtained by convolutional architectures
(17.6%) but the convolutional architecture and hard-coded
pooling uses prior knowledge of the topology of images.



A Generative Process for Sampling Contractive Auto-Encoders

fication and invariance.

The invariance criterion for training pooling units pro-
posed here works well for feature extraction for classifi-
cation problems (and so do classical pooling strategies)
but is not optimal for pure unsupervised learning. In-
deed, it throws away some of the information along
the first layer’s leading direction of variation (which
are typically not useful for classification, but would be
useful to reconstruct the input). A more general ap-
proach that we propose to investigate is based on the
idea of learning a representation that does not throw
these variations away but instead disentangles them
from each other (Bengio, 2009). We believe this could
be achieved by criteria which encourage the active fea-
tures to be invariant to the input variations captured
by other features.

Another direction of future work regards linking the
CAE to a density model giving rise to the appropriate
local covariance (i.e., the one used in the generative
process). If we consider a small neighborhood around
a point x with density p(x), then the local variance
is the variance associated with the density that is the
product of p with a local kernel (such as as Gaussian
or uniform ball) centered at x. The generating pro-
cess we have proposed here essentially corresponds to
moves according to a Brownian motion in which the lo-
cal mean and covariance are location-dependent. The
interesting question is how one should pick those lo-
cal means and covariances so as to replicate a target
density. Intuitively, these should depend on the lo-
cal structure of the density, so that the mean moves
points towards the manifold (in the direction of the
log-likelihood gradient) and the covariance disallows
moving out of the manifold. Note that both of these
are captured by the CAE.

References

Y. Bengio. Learning deep architectures for AI. Foun-
dations & Trends in Mach. Learn., 2(1):1–127, 2009.

Y. Bengio and M. Monperrus. Non-local manifold tan-
gent learning. In NIPS’2004, pages 129–136. MIT
Press, 2005.

Y. Bengio, H. Larochelle, and P. Vincent. Non-local
manifold Parzen windows. In NIPS’2005, pages
115–122. MIT Press, 2006a.

Y. Bengio, M. Monperrus, and H. Larochelle. Nonlocal
estimation of manifold structure. Neural Computa-
tion, 18(10):2509–2528, 2006b.

O. Breuleux, Y. Bengio, and P. Vincent. Quickly
generating representative samples from an rbm-

derived process. Neural Computation, 23(8):2053–
2073, Aug. 2011.

L. Cayton. Algorithms for manifold learning. Techni-
cal Report CS2008-0923, UCSD, 2005.

A. Coates and A. Y. Ng. Selecting receptive fields in
deep networks. In NIPS’2011, 2011.

I. Goodfellow, Q. Le, A. Saxe, and A. Ng. Measuring
invariances in deep networks. In NIPS’2009, pages
646–654, 2009.

G. E. Hinton, S. Osindero, and Y. Teh. A fast learning
algorithm for deep belief nets. Neural Computation,
18:1527–1554, 2006.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel. Backpropa-
gation applied to handwritten zip code recognition.
Neural Computation, 1(4):541–551, 1989.

H. Narayanan and S. Mitter. Sample complexity of
testing the manifold hypothesis. In NIPS’2010.
2010.

M. Ranzato, J. Susskind, V. Mnih, and G. E. Hin-
ton. On deep generative models with applications to
recognition. In CVPR’11, pages 2857–2864, 2011.

S. Rifai, Y. Dauphin, P. Vincent, Y. Bengio, and
X. Muller. The manifold tangent classifier. In
NIPS’2011, 2011a. Student paper award.

S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Ben-
gio. Contracting auto-encoders: Explicit invariance
during feature extraction. In ICML’2011, 2011b.

S. Roweis and L. K. Saul. Nonlinear dimensionality
reduction by locally linear embedding. Science, 290
(5500):2323–2326, Dec. 2000.

B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear
component analysis as a kernel eigenvalue problem.
Neural Computation, 10:1299–1319, 1998.

P. Simard, B. Victorri, Y. LeCun, and J. Denker. Tan-
gent prop - A formalism for specifying selected in-
variances in an adaptive network. In NIPS’1991,
1992.

J. Tenenbaum, V. de Silva, and J. C. Langford. A
global geometric framework for nonlinear dimen-
sionality reduction. Science, 290(5500):2319–2323,
Dec. 2000.

M. E. Tipping and C. M. Bishop. Mixtures of proba-
bilistic principal component analysers. Neural Com-
putation, 11(2):443–482, 1999.


