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Abstract

In environments with uncertain dynamics ex-
ploration is necessary to learn how to per-
form well. Existing reinforcement learning
algorithms provide strong exploration guar-
antees, but they tend to rely on an ergod-
icity assumption. The essence of ergodicity
is that any state is eventually reachable from
any other state by following a suitable policy.
This assumption allows for exploration algo-
rithms that operate by simply favoring states
that have rarely been visited before. For
most physical systems this assumption is im-
practical as the systems would break before
any reasonable exploration has taken place,
i.e., most physical systems don’t satisfy the
ergodicity assumption. In this paper we ad-
dress the need for safe exploration methods
in Markov decision processes. We first pro-
pose a general formulation of safety through
ergodicity. We show that imposing safety by
restricting attention to the resulting set of
guaranteed safe policies is NP-hard. We then
present an efficient algorithm for guaranteed
safe, but potentially suboptimal, exploration.
At the core is an optimization formulation
in which the constraints restrict attention to
a subset of the guaranteed safe policies and
the objective favors exploration policies. Our
framework is compatible with the majority
of previously proposed exploration methods,
which rely on an exploration bonus. Our ex-
periments, which include a Martian terrain
exploration problem, show that our method
is able to explore better than classical explo-
ration methods.
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1. Introduction

When humans learn to control a system, they natu-
rally account for what we think of as safety. For exam-
ple, when a novice pilot learns how to fly an RC heli-
copter, they will slowly spin up the blades until the he-
licopter barely lifts off, then quickly put it back down.
They will repeat this a few times, slowly starting to
bring the helicopter a little bit off the ground. When
doing so they would try out the cyclic (roll and pitch)
and rudder (yaw) control, while—until they have be-
come more skilled—at all times staying low enough
that simply shutting it down would still have it land
safely. When a driver wants to become skilled at driv-
ing on snow, they might first slowly drive the car to a
wide open space where they could start pushing their
limits. When we are skiing downhill, we are careful
about not going down a slope into a valley where there
is no lift to take us back up.

One would hope that exploration algorithms for phys-
ical systems would be able to account for safety and
have similar behavior naturally emerge. Unfortunately
most existing exploration algorithms completely ig-
nore safety issues. More precisely phrased, most exist-
ing algorithms have strong exploration guarantees, but
to achieve these guarantees they assume ergodicity of
the Markov decision process (MDP) in which the ex-
ploration takes place. An MDP is ergodic if any state
is reachable from any other state by following a suit-
able policy. This assumption does not hold true in the
exploration examples presented above as each of these
systems could break during (non-safe) exploration.

Our first important contribution is a definition of
safety, which, at its core, requires restricting atten-
tion to policies that preserve ergodicity with some well
controlled probability. Imposing safety is, unfortu-
nately, NP-hard in general. Our second important
contribution is an approximation scheme leading to
guaranteed safe, but potentially sub-optimal, explo-
ration.1 A third contribution is the consideration of

1Note that existing (unsafe) exploration algorithms are
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uncertainty in the dynamics model that is correlated
over states. While usually the assumption is that un-
certainty in different parameters is independent—as
this makes problem more tractable computationally—
being able to learn about state-action pairs before vis-
iting them is critical for safety.

Our experiments illustrate that our method indeed
achieves safe exploration, in contrast to plain explo-
ration methods. They also show that our algorithm
is almost as computationally efficient as planning in
a known MDP—but then, as every step leads to an
update in knowledge about the MDP, this computa-
tion is to be repeated after every step. Our approach
is able to safely explore grid worlds of size up to 50
100. Our method can make safe any type of explo-
ration that relies on exploration bonuses, which is the
case for most existing exploration algorithms, includ-
ing, for example, the methods proposed in (Brafman
& Tennenholtz, 2001; Kolter & Ng, 2009). In this ar-
ticle we do not focus on the exploration objective and
use existing ones.

Safe exploration has been the focus of a large number
of articles. (Gillula & Tomlin, 2011; Aswani & Bouf-
fard, 2012) propose safe exploration methods for linear
systems with bounded disturbances based on model
predictive control and reachability analysis. They de-
fine safety in terms of safe regions of the state space,
which, we will show, is not always appropriate in the
context of MDPs. The safe exploration for MDP meth-
ods proposed by (Geramifard et al., 2011; Hans et al.,
2008) gauge safety based on the best best estimate of
the transition measure but they ignore the level of un-
certainty in this estimate. As we will show, this is not
sufficient to provably guarantee safety.

Provably efficient exploration is a recurring theme in
reinforcement learning (Strehl & Littman, 2005; Li
et al., 2008; Brafman & Tennenholtz, 2001; Kearns
& Singh, 2002; Kolter & Ng, 2009). Most methods,
however, tend to rely on the assumption of ergodicity
which rarely holds in interesting practical examples;
consequently, these methods are rarely applicable for
physical systems. The issue of provably guaranteed
safety, or risk aversion, under uncertainty in the MDP
parameters has also been studied in the reinforcement
literature. In (Nilim & El Ghaoui, 2005) they propose
a robust MDP control method assuming the transition
frequencies are drawn from an orthogonal convex set
by an adversary. Unfortunately, it seems impossible
to use their method to constrain some safety objec-
tive while optimizing a different exploration objective.

also sub-optimal, in that they are not guaranteed to com-
plete exploration in the minimal number of time steps.

In (Delage & Mannor, 2007) they present a safe ex-
ploration algorithm for the special case of Gaussian
distributed ambiguity in the reward and state-action-
state transition probabilities, but their safety guaran-
tees are only accurate if the ambiguity in the transition
model is small.

This is the 8-page (ICML format) version of this paper.
All references to the appendix refer to the appendix of
the full paper (Moldovan & Abbeel, 2012), which is
identical up to this sentence and the appendix.

2. Notation and Assumptions

Due to space constraints, we will not give a general in-
troduction to Markov decision processes (MDPs). For
an introduction to MDPs we refer the readers to (Sut-
ton & Barto, 1998; Bertsekas & Tsitsiklis, 1996).

We use capital letters to denote random variables; for
example, the total reward is: V :=

∑∞
t=0RSt,At

. We
represent the policies and the initial state distributions
by probability measures. Usually the measure π will
correspond to a policy and the measure s := δ(s),
which puts measure only in state s, will correspond
to starting in state s. With this notation, the usual
value recursion, assuming a known transition measure,
p, reads:

Eps,π[V ] =
∑
a,s′

πs,a

(
E[R]s,a + ps,a,s′E

p
s′,π[V ]

)
.

We specify the transition measure as a superscript of
the expectation operator rather than a subscript for
typographical convenience; in this case, and in gen-
eral, the positioning of indexes as subscripts or su-
perscripts adds no extra significance. We will let the
transition measure p sometimes sum to less than one,
that is

∑
s′ ps,a,s′ ≤ 1. The missing mass is implicitly

assigned to transitioning to an absorbing “end” state,
which, for example, allows us to model γ discounting
by simply using γp as a transition measure.

We model ambiguous dynamics in a Bayesian way, al-
lowing the transition measure to also be a random
variable. When this is the case, we will use P to de-
note the, now random, transition measure. The belief,
which we will denote by β, is our Bayesian probabil-
ity measure over possible dynamics, governing P and
R. Therefore, the expected return under the belief and
policy π, starting from state s, is EβE

P
s,π[V ]. We allow

beliefs under which transition measures and rewards
are arbitrarily correlated. In fact, such correlations
are usually necessary to allow for safe exploration. For
compactness we will often use lower case letters to de-
note the expectation of their upper case counterparts.
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Specifically, we will use the notations p := Eβ [P ] and
r := Eβ [R] throughout.

3. Problem formulation

3.1. Exploration Objective

Exploration methods, as those proposed in (Brafman
& Tennenholtz, 2001; Kolter & Ng, 2009), operate by
finding optimal policies in constructed MDPs with ex-
ploration bonuses. The R-max algorithm, for exam-
ple, constructs an MDP based on the discounted ex-
pected transition measure and rewards under the be-
lief, and adds a deterministic, belief dependent explo-
ration bonus, ξβs,a := maxs,aEβRs,a, to any transitions
that are not sufficiently well known. Our method al-
lows adding safety constraints to any such exploration
methods. Henceforth, we will restrict attention to such
exploration methods, which can be formalized as op-
timization problems of the form:

maximize πo
Eγps0,πo

∞∑
t=0

(
rSt,At

+ ξβSt,At

)
. (1)

3.2. Safety Constraint

The issue of safety is closely related to ergodicity. Al-
most all proposed exploration techniques presume er-
godicity; authors present it as a harmless technical as-
sumption but it rarely holds in interesting practical
problems. Whenever this happens, their efficient ex-
ploration guarantees cease to hold, often leading to
very inefficient policies. Informally, an environment
is ergodic if any mistake can be forgiven eventually.
More specifically, a belief over MDPs is ergodic if and
only if any state is reachable from any other state via
some policy or, equivalently, if and only if:

∀s, s′,∃ πr such that EβE
P
s,πr

[Bs′ ] = 1, (2)

where Bs′ is an indicator random variable of the event
that the system reaches state s′ at least once: Bs′ =
1{∃t <∞ such that St = s′} = min (1,

∑
t 1St=s′).

Unfortunately, many environments are not ergodic.
For example, our robot helicopter learning to fly can-
not recover on its own after crashing. Ensuring almost
sure ergodicity is too restrictive for most environments
as, typically, there always is a very small, but non-
zero, chance of encountering that particularly unlucky
sequence of events that breaks the system. Our idea
is to restrict the space of eligible policies to those that
preserve ergodicity with some user-specified probabil-
ity, δ, called the safety level. We name these policies
δ-safe. Safe exploration now amounts to choosing the
best exploration policy from this set of safe policies.

BS

FE
a .2

a .8

b

c .9

a

b
c .1

Figure 1. Starting from state S, the policy (aababab. . . ) is
safe at a safety level of .8. However, the policy (acccc. . . )
is not safe since it will end up in the sink state E with
probability 1. State-action Sa and state B can neither be
considered safe nor unsafe, since both policies use them.

Informally, if we stopped a δ-safe policy πo at any time
T , we would be able to return from that point to the
home state s0 with probability δ by deploying a return
policy πr. Executing only δ-safe policies in the case of
a robot helicopter learning to fly will guarantee that
the helicopter is able to land safely with probability
δ whenever we decide to end the experiment. In this
example, T is the time when the helicopter is recalled
(perhaps because fuel is running low), so we will call
T the recall time. Formally, an outbound policy πo is
δ-safe with respect to a home state s0 and a stopping
time T if and only if:

∃πr such that EβE
P
s0,πo

[
EPST ,πr

[Bs0 ]
]
≥ δ. (3)

Note that, based on Equation (2), any policy is δ-safe
for any δ if the MDP is ergodic with probability one
under the belief. For convenience we will assume that
the recall time, T , is exponentially distributed with
parameter 1 − γ, but our method also applies when
the recall time equals some deterministic horizon. Un-
fortunately, expressing the set of δ-safe policies is NP-
hard in general, as implied by the following theorem
proven in the appendix.

Theorem 1. In general, it is NP-hard to decide
whether there exist δ-safe policies with respect to a
home state, s0, and a stopping time, T , for some be-
lief, β.

3.3. Safety Counter-Examples

We conclude this section with counter-examples to
three other, perhaps at first sight more intuitive, def-
initions of safety. First, we could have tried to define
safety in terms of sets of safe states or state-actions.
That is, we might think that making the non-safe
states and actions unavailable to the planner (or sim-
ply inaccessible) is enough to guarantee safety. Fig-
ure 1 shows an MDP where the same state-action is
used both by a safe and by an unsafe policy. The
idea behind this counter-example is that safety de-
pends not only on the states visited, but also on the
number of visits, thus, on the policy. This shows that
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Figure 2. Under out belief the two MDPs above both have
probability .5. It is intuitively unsafe to go from the start
state S to B since we wouldn’t know whether the way back
is via U or L, even though we know for sure that a return
policy exists.
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Figure 3. The two MDPs on the left both have probability
.5. Under this belief, starting from state A, policy (aaa. . . )
is unsafe. However, under the mean transition measure,
represented by the MDP on the right, the policy is safe.

safety should be defined in terms of safe policies, not
in terms of safe states or state-actions.

Second, we might think that it is perhaps enough to
ensure that there exists a return policy for each poten-
tial sample MDP from the belief, but not impose that
it be the same for all samples. That is, we might think
that condition 3 is too strong and, instead, it would
be enough to have:

Eβ1{∃πr : EPs0,πo
EPST ,πr

[Bs0 ] = 1} ≥ δ.

Figure 2 shows an MDP where this condition holds,
yet all policies are naturally unsafe.

Third, we might think that it is sufficient to simply use
the expected transition measure when defining safety,
as in the equation below. Figure 3 shows that this is
not the case; the expected transition measure is not a
sufficient statistic for safety.

∃πr such that Eps0,πo

[
EpST ,πr

[Bs0 ]
]
≥ δ.

4. Guaranteed Safe, Potentially
Sub-optimal Exploration

Although imposing the safety constraint in Equa-
tion (3) is NP-hard, as shown in Theorem 1, we can
efficiently constrain a lower bound on the safety objec-
tive, so the safety condition is still provably satisfied.
Doing so could lead to sub-optimal exploration since
the set of policies we are optimizing over has shrunk.
However, we should keep in mind that the exploration
objectives represent approximate solutions to other

Algorithm 1 Safe exploration algorithm

Require: prior belief β, discount γ, safety level δ.
Require: function ξ : belief → exploration bonus
M,N ← new MDP objects
repeat
s0, ϕ← current state and observations
update belief β with information ϕ
ξβs,a ← ξ(β) (exploration bonus based on β)

σβs,a ←
∑
s′ Eβ [min(0, Ps,a,s′ − Eβ [Ps,a,s′ ])]

M.transition measure← Eβ [P ](1− 1s=s0)
M.reward function← 1s=s0 + (1− 1s=s0)σβs,a
πr, v ←M.solve()
N.transition measure← γEβ [P ]
N.reward function← Eβ [Rs,a] + ξβs,a
N.constraint reward func.← (1− γ)vs + γσβs,a
N.constraint lower bound← δ
πo, vξ, vσ ← N.solve under constraint()
qσs,a ← (1− γ)vs + γσβs,a +

∑
s′ ps,a,s′v

σ
s′

a← argmax{πo
s0,a>0} q

σ
s0,a (de-randomize policy)

take action a in environment
until ξβ = 0, so there is nothing left to explore

NP-hard problems, so optimality has already been for-
feited in existing (non-safe) approaches to start out
with. Algorithm 1 summarizes the procedure and the
experiments presented in the next section show that,
in practice, when the ergodicity assumptions are vi-
olated, safe exploration is much more efficient than
plain exploration.

Putting together the exploration objective defined in
Equation (1) and the safety objective defined in Equa-
tion (3) allows us to formulate safe exploration at level
δ as a constrained optimization problem:

maximize πo,πr Eγps0,πo

∑
t

(
rSt,At + ξβSt,At

)
such that: EβE

P
s0,πo

[
EPST ,πr

[Bs0 ]
]
≥ δ.

The exploration objective is already conveniently for-
mulated as the expected reward in an MDP with tran-
sition measure γp, so we will not modify it. On the
other hand, the safety constraint is difficult to deal
with as is. Ideally, we would like the safety constraint
to also equal some expected reward in an MDP. We
will see that, in fact, it takes two MDPs to express the
safety constraint.

First, we express the inner term, EPST ,πr
[Bs0 ], as the

expected reward in an MDP. We can replicate the be-
haviour of Bs0 , that is counting only the first time
state s0 is reached, by using a new transition measure,
P · (1 − 1s=s0) under which, once s0 is reached, any
further actions lead immediately to the implicit “end”
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state. Formally, we express this by the identity:

EPST ,πr
[Bs0 ] = E

P ·(1−1s=s0
)

ST ,πr

∞∑
t=0

1St=s0 .

We now focus on the outer term, EPs0,πo

[
EPST ,πr

[Bs0 ]
]
.

Since the recall time, T , is exponentially distributed
with parameter 1−γ, we can view ST as the final state
in a γ-discounted MDP starting at state s0, following
policy πo. In this MDP, the inner term plays the role of
a terminal reward. To put the problem in a standard
form, we convert this terminal reward to a step-wise
reward by multiplying it by 1− γ.

EPs0,πo

[
EPST ,πr

[Bs0 ]
]

= EγPs0,πo

∞∑
t=0

(1− γ)
[
EPSt,πr

[Bs0 ]
]
.

At this point, we have expressed the safety constraint
in the MDP formalism, but the transition measures of
these MDPs, P (1 − 1s=s0) and γP , are still random.
If we could replace these random transition measures
with their expectations under the belief β that would
significantly simplify the safety constraint. It turns out
we can do this, at the expense of making the constraint
more stringent. Our tool for doing so is Theorem 2
presented below, but proven in the appendix. It shows
that we can replace a belief over MDPs by a single
MDP with the expected transition measure, featuring
an appropriate reward correction such that, under any
policy, the value of this MDP is a lower bound on the
expected value under the belief.

Theorem 2. Let β be a belief such that for any policy,
π, and any starting state, s, the total expected reward
in any MDP drawn from the belief is between 0 and 1;
i.e. 0 ≤ EPs,π[V ] ≤ 1, β-almost surely. Then the fol-
lowing bound holds for any policy, π, and any starting
state, s:

EβE
P
s,π

∞∑
t=0

RSt,At
≥ Eps,π

∞∑
t=0

(
Eβ [RSt,At

] + σβSt,At

)
where σβs,a :=

∑
s′

Eβ [max(0, Ps,a,s′ − Eβ [Ps,a,s′ ])] .

We first apply Theorem 2 to the outer term, yielding
the following bound:

EPs0,πo

[
EPST ,πr

[Bs0 ]
]

= EγPs0,πo

∞∑
t=0

(1− γ)
[
EPSt,πr

[Bs0 ]
]

≥ Eγps0,πo

∞∑
t=0

(
(1− γ)EβE

P
St,πr

[Bs0 ] + γσβSt,At

)
.

We, then, apply it again to the inner term:

EβE
P
s,πr

[Bs0 ] = E
P ·(1−1s=s0

)
s,πr

∞∑
t=0

1St=s0 ≥ (4)

≥ Ep·(1−1s=s0
)

s,πr

∞∑
t=0

(
1St=s0 + (1− 1St=s0)σβSt,At

)
.

Combining the last two results allows us to replace
the NP-hard safety constraint with a stricter, but now
tractable, constraint. The resulting optimization prob-
lem corresponds to the guaranteed safe, but poten-
tially sub-optimal exploration problem:

maximize πo,πr Eγps0,πo

∑
t

(
rSt,At + ξβSt,At

)
(5)

s.t.: Eγps0,πo

∞∑
t=0

(
(1− γ)vSt

+ γσβSt,At

)
≥ δ and

vs = E
p·(1−1s=s0 )
s,πr

∞∑
t=0

(
1St=s0 + (1− 1St=s0)σβSt,At

)
.

The term vs represents our lower bound for the inner
term per Equation (4), and is simply the value function
of the MDP corresponding to the inner term; i.e. the
MDP with transition measure p(1−1s=s0) and reward
function 1s=s0 +(1−1s=s0)σβs,a, under policy πr. Since
the return policy, πr, does not appear anywhere else,
we can split the safe exploration problem we obtained
in Equation (5) into two steps:

Step one: find the optimal return policy π∗r , and
corresponding value function v∗s , by solving the stan-
dard MDP problem below:

E
p·(1−1s=s0 )
s,πr

∞∑
t=0

(
1St=s0 + (1− 1St=s0)σβSt,At

)
.

Step two: find the optimal exploration policy π∗o un-
der the strict safety constraint, by solving the con-
strained MDP problem below:

maximize πo Eγps0,πo

∑
t

(
rSt,At + ξβSt,At

)
s.t.: Eγps0,πo

∞∑
t=0

(
(1− γ)v∗St

+ γσβSt,At

)
≥ δ.

The first step amounts to solving a standard MDP
problem while the second step amounts to solving a
constrained MDP problem. As shown by (Altman,
1999), both can be solved efficiently either by linear
programming, or by value-iteration. In our exper-
iments we used the LP formulation with the state-
action occupation measure as optimization variable.
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(a) Based on the available infor-
mation after the first step, moving
South-West is unsafe.

(b) The safe explorer successfully
uncovers all of the map by avoiding
irreversible actions.

(c) The adapted R-max explorer
gets stuck before observing the en-
tire map.

(d) Moving South-East is currently
considered unsafe since, based on
the available information, there is
no return path.

(e) After seeing more of the map,
our safe explorer decides that the
transition initially deemed unsafe
is, in fact, safe.

(f) The adapted R-max explorer
acts greedily. Even though its sec-
ond action, is, in fact safe, its third
action is not, so it gets stuck.

(g) Moving East is safe with prob-
ability .8 since the return path is
blocked for only one out of five pos-
sible heights of the unknown square
South of the start position.

(h) Safe exploration with δ = 1.0
does not risk moving East event
though the exploration bonuses are
much higher there.

(i) Safe exploration with δ ≤ .6
does move East. Note that, in this
case, our method overestimates the
probability of failure by a factor of
two and, thus, acts conservatively.

Figure 4. Exploration experiments in simple grid worlds. See text for full details. Square sizes are proportional to
corresponding state heights between 1 and 5. The large, violet squares have a height of 5, while the small, blue squares
have a height of 1. Gray spaces represent states that have not yet been observed. Each row corresponds to the same grid
world. The first column shows the belief after the first exploration step, while the second and third columns show the
entire trajectory followed by different explorers.

Solutions to the constrained MDP problem will usu-
ally be stochastic policies, and, in our experiments, we
found that following them sometimes leads to random
walks which explore inefficiently. We addressed the
issue by de-randomizing the exploration policies in fa-
vor of safety. That is, whenever the stochastic policy
proposes multiple actions with non-zero measure, we
choose the one among them that optimizes the safety
objective.

5. Experiments

5.1. Grid World

Our first experiment models a terrain exploration
problem where the agent has limited sensing capabil-
ities. We consider a simple rectangular grid world,
where every state has a height Hs. From our Bayesian
standpoint these heights are independent, uniformly
distributed categorical random variables on the set

{1, 2, 3, 4, 5}. At any time the agent can attempt to
move to any immediately neighboring state. Such
move will succeed with probability one if the height of
the destination state is no more than one level above
the current state; otherwise, the agent remains in the
current state with probability one. In other words, the
agent can always go down cliffs, but is unable to climb
up if they are too steep. Whenever the agent enters a
new state it can see the exact heights of all immedi-
ately surrounding states. We present this grid world
experiment to build intuition and to provide an easily
reproducible result. Figure 4 shows a number of ex-
amples where our exploration method results in intu-
itively safe behavior, while plain exploration methods
lead to clearly unsafe, suboptimal behavior.

Our exploration scheme, which we call adapted R-max,
is a modified version of R-max exploration (Brafman
& Tennenholtz, 2001), where the exploration bonus of
moving between two states is now proportional to the
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(a) Safe exploration with δ =
.98 leads to a model entropy
reduction of 7680.

(b) Safe exploration with δ =
.90 leads to a model entropy
reduction of 12660.

(c) Safe exploration with δ =
.70 leads to a model entropy
reduction of 35975.

(d) Regular (unsafe, δ = 0)
exploration leads to a model
entropy reduction of 3214.

Figure 5. Simulated safe exploration on a 2km by 1km area of Mars at -30.6 degree latitude and 202.2 degrees longitude,
for 15000 time steps, at different safety levels. See text for full details. The color saturation is inversely proportional to
the standard deviation of the height map under the posterior belief. Full coloration represents a standard deviation of
1cm or less. We report the difference between the entropies of the height model under the prior and the posterior beliefs
as a measure of performance. Images: NASA/JPL/University of Arizona.

number of neighboring unknown states that would be
uncovered as a result of the move, to account for the
remote observation model. The safety costs for this
exploration setup, as prescribed by Theorem 2 are:

σβs,a = −2Eβ [Ps,a](1− Eβ [Ps,a]) = −2Varβ [Ps,a]

where Ps,a := 1Hs+a≤Hs+1 is the probability that at-
tempted move a succeeds in state s and the belief β de-
scribes the distribution of the heights of unseen states.
In practice we found that this correction is a factor
of two larger than would be sufficient to give a tight
safety bound.

A somewhat counter intuitive result is that adding
safety constraints to the exploration objective will, in
fact, improve the fraction of squares explored in ran-
domly generated grid worlds. The reason why plain
exploration performs so poorly is that the ergodicity
assumptions are violated, so efficiency guarantees no
longer hold. Figure 6 in the appendix summarizes our
exploration performance results.

5.2. Martian Terrain

For our second experiment, we model the problem of
autonomously exploring the surface of Mars by a rover
such as the Mars Science Laboratory (MSL) (Lock-
wood, 2006). The MSL is designed to be remote con-
trolled from Earth but communication suffers a latency
of 16.6 minutes. At top speed, it could traverse about
20m before receiving new instructions, so it needs to
be able to navigate autonomously. In the future, when
such rovers become faster and cheaper to deploy, the
ability to plan their paths autonomously will become
even more important. The MSL is designed to a static
stability of 45 degrees, but would only be able to climb
slopes up to 5 degrees without slipping (MSL, 2007).
Digital terrain models for parts of the surface of Mars
are available from the High Resolution Imaging Sci-

ence Experiment (HiRISE) (McEwen et al., 2007) at
a scale of 1.00 meter/pixel and accurate to about a
quarter of a meter. The MSL would be able to obtain
much more accurate terrain models locally by stereo
vision.

The state-action space of our model MDP is the same
as in the previous experiment, with each state corre-
sponding to a square area of 20 by 20 meters on the
surface. We allow only transitions at slopes between
-45 and 5 degrees. The heights, Hs, are now assumed
to be independent Gaussian random variables. Un-
der the prior belief, informed by the HiRISE data, the
expected heights and their variances are:

Eβ [H] = D20[g ◦ h] and

Varβ [H] = D20[g ◦ (h− g ◦ h)2] + v0

where h are the HiRISE measurements, g is a Gaus-
sian filter with σ = 5 meters, “◦” represents image
convolution, D20 is the sub-sampling operator and
v0 = 2−4m2 is our estimate of the variance of HiRISE
measurements. We model remote sensing by assum-
ing that the MSL can obtain Gaussian noisy measure-
ments of the height at a distance d away with variance
v(d) = 10−6(d+ 1m)2.

To account for this remote sensing model we use a
first order approximation of the entropy of H as an
exploration bonus:

ξβs,a =
∑
s′

Varβ [Hs′ ]/v(ds,s′).

Figure 5 shows our simulated exploration results for a
2km by 1km area at −30.6 degrees latitude and 202.2
degrees longitude (PSP, 2008). Safe exploration at
level 1.0 is no longer possible, but, even at a con-
servative safety level of .98, our method covers more
ground than the regular (unsafe) exploration method
which promptly get stuck in a crater. Imposing the
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Table 1. Per-step planning times for the 50×100 grid world
used in the Mars exploration experiments, with γ = .999.

Problem setting Planning time (s)

Safe exploration at .98 5.86 ± 1.47
Safe exploration at .90 10.94 ± 7.14
Safe exploration at .70 4.57 ± 3.19
Naive constraint at .98 2.55 ± 0.42
Regular (unsafe) exploration 1.62 ± 0.26

safety constraint naively, with respect to the expected
transition measure, as argued against at the end of
Section 3.3, performs as poorly as unsafe exploration
even if the constraint is set at .98.

5.3. Computation Time

We implemented our algorithm in Python 2.7.2.7,
using Numpy 1.5.1 for dense array manipulation,
SciPy 0.9.0 for sparse matrix manipulation and Mosek
6.0.0.119 for linear programming. The discount factor
was set to .99 for the grid world experiment and to
.999 for Mars exploration. In the latter experiment
we also restricted precision to 10−6 to avoid numeri-
cal instabilities in the LP solver. Table 1 summarizes
planning times for our Mars exploration experiments.

6. Discussion

In addition to the safety formulation we discussed in
Section 3.2, out framework also supports a number of
other safety criteria that we did not discuss due to
space constraints:

• Stricter ergodicity ensuring that return is possible
within some horizon, H, not just eventually, with
probability δ.

• Ensuring that the probability of leaving some pre-
defined safe set of state-actions is lower than 1−δ.

• Ensuring that the expected total reward under the
belief is higher than δ.

Additionally, any number and combination of these
constraints at different δ-levels can be imposed simul-
taneously.
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