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Abstract

We present a framework for online inference
in the presence of a nonexhaustively defined
set of classes that incorporates supervised
classification with class discovery and model-
ing. A Dirichlet process prior (DPP) model
defined over class distributions ensures that
both known and unknown class distributions
originate according to a common base distribu-
tion. In an attempt to automatically discover
potentially interesting class formations, the
prior model is coupled with a suitably cho-
sen data model, and sequential Monte Carlo
sampling is used to perform online inference.
Our research is driven by a biodetection ap-
plication, where a new class of pathogen may
suddenly appear, and the rapid increase in
the number of samples originating from this
class indicates the onset of an outbreak.

1. Introduction

A training set is considered exhaustive if it contains
samples from all classes of informational value. When
some classes are missing and hence not represented,
the resulting training set is considered nonexhaustive.
It is impractical, often impossible, to define a training
set with a complete set of classes and then collect sam-
ples for each class, mainly because some of the classes
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may not be in existence at the time of training, they
may exist but are not known, or their existence may
be known but samples are simply not obtainable. A
traditional supervised classifier trained using a nonex-
haustive training set misclassifies a sample of a missing
class with a probability one, making the associated
learning problem ill-defined.

1.1. Motivation

The current research is driven mainly by a biosensing
problem involving prediction of the presence of specific
as well as unmatched/emerging pathogenic microor-
ganisms in various biological samples. A global surge
in the number of outbreaks together with elevated con-
cerns about biosecurity has led to an enormous interest
among scientific communities and government agencies
in developing reagantless techniques for rapid identifi-
cation of pathogens. Traditional recognition methods
based on antibodies or genetic matching remain labor
intensive and time consuming, and involve multiple
steps. Recent studies based on quantitative phenotypic
evaluation has shown great promise for distinguishing
bacterial cultures at the genus, species, and strain level.

The core advantage of label-free methods is their ability
to quantify phenotypes for which there are no avail-
able antibodies or genetic markers. This information
can be used within a traditional supervised-learning
framework in which knowledge discovered from inde-
pendently tested and prelabeled samples is used for
training. However, the quality of training libraries is po-
tentially limited because the sheer number of bacterial
classes would not allow for practical and manageable
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training in a traditional supervised setting; for instance
Salmonella alone has over 2400 known serovars. Ad-
ditionally, microorganisms are characterized by a high
mutation rate, which indicates new classes of bacteria
can emerge anytime. Nonexhaustive learning when
implemented in this domain in an online fashion aims
at rapid identification of new, emerging classes of mi-
croorganisms, which are not represented in the initial
training library. Ability to detect the sudden presence
of a new class (or classes) would be an important ele-
ment of an automated outbreak-identification strategy.

1.2. Proposed approach in a nutshell

Using a nonexhaustive training dataset, a Dirichlet pro-
cess prior (DPP) is coupled with a Normal data model
to deal with known as well as unknown classes. The
parameters of the base distribution, which is chosen
as a bivariate Normal × Inverted Wishart distribu-
tion, are estimated using samples initially available for
known classes. A sequential importance resampling
(SIR) technique is proposed to perform online infer-
ence to efficiently evaluate the probability of a new
sample belonging to an emerging class or one of the
existing ones without the need for explicit knowledge of
the class labels of previously observed samples. In this
framework new classes characterized by a rapid increase
in sample size is of significance for early identification
of potentially interesting class formations.

1.3. Related Work

Early work most similar to nonexhaustive learning
includes the two studies reported in (Akova et al.,
2010; Miller & Browning, 2003). In (Akova et al.,
2010) a Bayesian approach based on the maximum
likelihood detection of novelties using a dynamically
updated class set was proposed. In (Miller & Browning,
2003) known and unknown classes were modeled by a
mixture of experts model with learning performed by
expectation-maximization. The former depends on the
class conditional likelihoods for creating new classes
and the latter uses minimum description length coupled
with some heuristics to determine the optimal number
of mixture components. Neither of the approaches
consider a prior model for class distributions which
results in the decision to create a new class to be mainly
data driven and ad-hoc in both approaches. Also the
lack of efficient online/incremental learning capabilities
makes both approaches impractical for processing large
sequential data.

Other work related to nonexhaustive learning can be
reviewed within the scope of offline anomaly/novelty
detection, online/incremental learning, and online clus-

tering with novelty detection. Most of the early work on
offline anomaly/novelty detection is developed around
one-class classification problems and uses either sup-
port estimation, one-class classifiers, or density-based
models to identify novelties. These techniques provide
an offline framework for detecting novelties but do not
differentiate among them; thus, lack the capability to
discover and model individual classes online.

Online/incremental learning develops efficient algo-
rithms for sequential classification problems such that
the classifier model can be updated using only the
current sample without retraining with past samples.
Many of these studies assume that the initial training
set is exhaustive. The one (Kivinen et al., 2001) that
does consider nonexhaustiveness studies novelty detec-
tion along with online learning, but its scope is limited
to one class problems only.

Another line of work related to nonexhaustive learning
has been developed in the area of online clustering with
and without novelty detection. We will use DPP in
this study for online class modeling the same way these
techniques use it for online cluster modeling. How-
ever, unlike online cluster modeling, which depends
on a vague prior, a more informative prior can be
obtained in a nonexhaustive setting using samples of
represented classes. To avoid the vague prior issue the
work in (Zhang et al., 2005) proposes using a histor-
ical dataset to estimate the parameters of the DPP.
Although the work is framed as a clustering problem
with a multinomial data model, it is similar to the
proposed study in using labeled data for estimating
the prior model. However, the solution offered in this
approach for the sequential update of the cluster mod-
els is suboptimal in that the posterior probability for
each incoming sample was evaluated once and same
values were used for all subsequent samples. As new
samples emerge these previously evaluated probability
values can increase/decrease resulting in suboptimal
class assignments for samples observed earlier. We be-
lieve that the proposed sequential inference technique
involving particle filters is an important step toward
addressing this problem in a nonexhaustive setting.

2. Problem formulation

In this section we present a general framework for learn-
ing with a nonexhaustively-defined training dataset,
which allows for online discovery as well as modeling of
new classes. To differentiate classes discovered online
from those initially available in the training library we
introduce the notion of labeled vs. unlabeled classes,
where the terms labeled and unlabeled refer to verified
and unverified classes, respectively. When referring to
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classes discovered online the terms unlabeled class and
cluster are used interchangeably throughout this text.
In the proposed framework online class modeling is
tackled by a DPP model (Ferguson, 1973).

2.1. Dirichlet process prior

Let xi, i = {1, . . . , n} be the feature vector characteriz-
ing a sample in the d-dimensional vector space < and
yi be its corresponding class indicator variable. If xi
is distributed according to an unknown distribution
p(.|θi), then defining a DPP over class distributions is
equivalent to modeling the prior distribution of θ by a
Dirichlet process. More formally,

xi|θi ∼ p(·|θi)
θi ∼ G(·)
G ∼ DP (·|G0, α)

(1)

where G is a random probability measure, which is
distributed according to a Dirichlet process (DP) de-
fined by a base distribution, G0, and the precision
parameter, α. Given that G is distributed according
to a DP, the stick-breaking construction due to (Ish-
waran & James, 2001) suggests G =

∑∞
i=1 βiδφi

where

βi = β
′

i

∏i−1
l=1(1 − β′l ), β

′

i ∼ Beta(1, α), and φi ∼ G0.
The points φi are called the atoms of G. Note that un-
like continous distributions the probability of sampling
the same φi twice is not zero and proportional to βi.
Thus, G is considered a discrete distribution.

2.2. DPP in a nonexhaustive framework

The suitability of the DPP model for nonexhaustive
learning can be better conceived with the help of the
conditional prior of θ. Let’s assume that at a certain
time point the training set contains a sequence of n sam-
ples. The conditional prior of θn+1 conditioned on all
past θi, i = {1, . . . , n} can be obtained by integrating
out G in (1) which becomes,

θn+1|θ1, . . . , θn ∼
α

α+ n
G0(·) +

1

α+ n

n∑
i=1

δθi (2)

This conditional prior can be interpreted as a mix-
ture of two distributions. Any sample that originates
from this prior comes from the base distribution G0(·)
with a probability of α

α+n or uniformly generated from
{θ1, . . . , θn} with a probability of n

α+n . With a positive
probability a sequence of n samples generated this way
will not be all distinct. If we assume that there are
k ≤ n distinct values of θ in a sequence of size n, then
(2) can be rewritten,

θn+1|θ1, . . . , θn ∼
α

α+ n
G0(·) +

1

α+ n

k∑
j=1

njδθ∗j (3)

where θ∗j , j = {1, . . . , k} are the distinct values of θi
and nj are the number of occurrences of each θ∗j in
the sequence. Each θ∗j defines a unique class with an
indicator variable y∗j , whose samples are distributed
according to the probability distribution p(·|θ∗j ). Based
on (3), after a sequence of n samples are generated,
yn+1 = y∗j with probability equal to

nj

α+n , and yn+1 =
y∗k+1, with probability equal to α

α+n , where y∗k+1 is
the new class whose parameter is defined by θ∗k+1 and
sampled from G0(·).

This prior model can also be illustrated as a Chinese
Restaurant process (CRP) (Aldous, 1985). The CRP
uses a metaphor of a Chinese restaurant with infinitely
many tables where the (n + 1)th customer sits at a
previously occupied table j with a probability of

nj

α+n
and at a new table k + 1 with a probability of α

α+n .
Here nj is the number of customers sitting at table j
and n is the total number of customers.

Our discussion so far has been limited to the prior
model. Next, we will incorporate the data model and
use the conditional posterior to determine whether a
new sample xn+1 should be assigned to one of the
existing classes or to a new class sampled from G0.
More specifically, we are interested in the distribution
p(θn+1|xn+1, θ1, . . . , θn), which is proportional to

p(θn+1|xn+1, θ1, . . . , θn)
∝ α

α+np(xn+1)p(θn+1|xn+1)

+ 1
α+n

∑k
j=1 njp(xn+1|θ∗j )δθ∗j

(4)

which indicates xn+1 either comes from a new class,
y∗k+1, which inherits θ∗k+1 sampled from p(θn+1|xn+1),
with a probability proportional to α

α+np(xn+1) or
belongs to y∗j with a probability proportional to
nj

α+np(xn+1|θ∗j ).

Since θ∗j are not known and has to be estimated using
samples in the represented classes, p(xn+1|θ∗j ) can be
replaced with the class conditional predictive distri-
bution p(xn+1|Dj) where Dj = {xi}i∈Cj denotes the
subset of samples belonging to class y∗j defined by the

index set Cj . Thus, provided that class membership
information for all samples processed before xn+1 are
known, the decision function to assign xn+1 to a new
class or one of the existing ones can be expressed as,

h (xn+1) =


yn+1 = y∗j if

nj∗

α+np (xn+1|Dj∗) > α
α+np (xn+1)

yn+1 = y∗k+1 if
nj∗

α+np (xn+1|Dj∗) <
α

α+np (xn+1)

(5)

where j∗ = argmaxj

{
nj

α+np(xn+1|Dj)
}k
j=1

. However,

in the nonexhaustive learning framework class mem-
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bership information is only available for samples ini-
tially present in the training dataset. For all samples
processed online before xthn+1 sample the true class
membership information is unknown.

3. Inference with a nonexhaustive set of
classes

Before we move on to discussing how inference can
be performed in this framework, we introduce new
notation to distinguish between the two types of sam-
ples available during online execution: samples ini-
tially available in the training dataset with known
class membership information and samples observed
online with no verified class membership information.
Let X = {x1, . . . , x`} be the set of all training sam-
ples initially available, Y = {y1, . . . , y`} be the corre-
sponding set of known class indicator variables with
yi ∈ {1, . . . , k}, k being the number of known classes,
X̃n = {x̃1, . . . , x̃n} be the set of n samples sequentially
observed online, and Ỹ n = {ỹ1, . . . , ỹn} be the corre-
sponding set of unknown class indicator variables with

ỹi ∈
{

1, . . . , k̃ + k
}

, k̃ being the number of unrepre-

sented classes associated with these n samples.

3.1. Inference by Gibbs Sampling

We are interested in predicting Ỹn+1, i.e., the class
labels for all X̃n+1 at the time x̃n+1 is observed, which
can be done by finding the mean of the posterior dis-
tribution p(Ỹ n+1|X̃n+1, X, Y ). Although this integral
cannot be easily evaluated, the closed form solution
for the conditional distributions of the latent vari-
ables ỹi can easily be obtained. Thus, Gibbs sam-
pling with the sampler state consisting of variables
ỹi, i = {1, . . . , n+ 1}, can be used to approximate
p(Ỹ n+1|X̃n+1, X, Y ). One sweep of the Gibbs sampler
will involve sampling from the following conditional
distribution ∀i.

p(ỹi|Ỹ (n+1)/i, X̃n+1, X, Y )
∝ α

α+n+`p(x̃i)δk̃+k+1

+ 1
α+n+`

∑k+k̃
j=1 njp(x̃i|Dj)δj

(6)

where Ỹ (n+1)/i denotes Ỹ (n+1) without ỹi.

3.2. Inference by Sequential Importance
Resampling (SIR)

With the Gibbs sampler approach every time a new
sample is observed the sampler has to run from start
to predict whether the current sample belongs to one
of the existing classes (labeled/unlabeled) or to a new
class. This sampling scheme eventually becomes in-
tractable as the number of unlabeled samples gradually

increases. We believe that this problem can be ad-
dressed to a greater extent by developing a sequential
sampling approach based on Sequential Importance Re-
sampling (SIR) (Doucet et al., 2000). In this approach,
at any given time, the sampler only depends on a set
of particles and their corresponding weights, which are
efficiently updated in a sequential manner each time a
new sample is observed without the need for the past
samples.

More specifically, we are interested in evaluating the

expectation Ep(Ỹ n+1|Ỹ n,X̃n+1,Y,X)

[
Ỹ n+1

]
. Using an

importance function q(Ỹ n+1|Ỹ n, X̃n+1, Y,X) the rele-
vant integral can be approximated as follows.

Ep(Ỹ n+1|Ỹ n,X̃n+1,Y,X)

[
Ỹ n+1

]
=
∫
Ỹ n+1p(Ỹ n+1|Ỹ n, X̃n+1, Y,X)∂Ỹ n+1

=
∫
Ỹ n+1wn+1(Ỹ n+1)q(Ỹ n+1|Ỹ n, X̃n+1, Y,X)∂Ỹ n+1

≈
∑M
m=1 Ỹ

n+1wn+1
m (Ỹ n+1)δỸ n+1

m

(7)
where M is the number of particles and wn+1

m (Ỹ n+1) =
p(Ỹ n+1|Ỹ n,X̃n+1,Y,X)

q(Ỹ n+1|Ỹ n,X̃n+1,Y,X)
is the corresponding weight of the

mth particle at the time (n+ 1)th sample is observed.
Particles are sampled from the importance function
q(Ỹ n+1|Ỹ n, X̃n+1, Y,X). The weights can be evalu-
ated sequentially up to an unknown constant as out-
lined next.

Using the chain rule and after some manipulations
a sequential update formula for the particle weights
wmn+1(Ỹ n+1) can be derived as follows

wn+1
m (Ỹ n+1)

= p(Ỹ n+1|Ỹ n,X̃n+1,Y,X)

q(Ỹ n+1|Ỹ n,X̃n+1,Y,X)

= wnm(Ỹ n) p(x̃n+1|Ỹ n+1,X̃n,Y,X)p(ỹn+1|Ỹ n,Y )

p(x̃n+1|Ỹ n,X̃n,Y,X)q(ỹn+1|Ỹ n,X̃n+1,Y,X)

(8)

Although, it is not optimal in terms of minimizing the
variance, the common choice for q(ỹn+1|Ỹ n, X̃n+1,
Y,X) = p(ỹn+1|Ỹ n, Y ) further simplifies the update
formula by canceling out both terms in (8). After con-
sidering the fact that p(x̃n+1|Ỹ n, X̃n, Y,X) is constant
with respect to Ỹ n+1, the sequential update formula
for the particle weights become

wn+1
m (Ỹ n+1) = Cwnm(Ỹ n)p(x̃n+1|Ỹ n+1, X̃n, Y,X)

(9)

Since p(x̃n+1|Ỹ n+1, X̃n, Y,X) can be evaluated for
x̃n+1 for any given particle, the weights at stage n+ 1
can be obtained up to an unknown constant C. Using
normalized weights eliminates C and thus the discrete
probability distribution in (7) can be fully evaluated
and efficiently updated.
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Every time a new sample is observed, first, a designated
number of, i.e., R, new particles are resampled for each
of the M particle using the importance function, then,
weights are updated for the M ∗ R particles, finally,
downsampling, stratified on the particle weights, is
performed to select M particles out of M ∗ R ones.
Resampling is critical to avoid the weight degeneracy
problem mainly associated with Dirichlet process mix-
ture models. To address the weight degeneracy problem
a resampling strategy that ensures a well-distributed
particle set was introduced in (Fearnhead & Clifford,
2003; Wood & Black, 2008). Using this strategy, in-
stead of resampling R new particles for each existing
particle from the importance function, k + k̃ + 1 par-
ticles are generated by considering all possible class
labels an incoming sample can take for a given particle.
Note that although k, i.e., number of labeled classes
is constant across all particles, k̃, i.e., number of unla-
beled classes, varies from one particle to other. Since
all possible classes are considered in this approach, it
is now essential to revise the weight update formula to
include prior probability for each class.

3.3. Estimating the precision parameter α

In the proposed framework α is the parameter that
controls the prior probability of assigning a new sam-
ple to a new cluster and thus, plays a critical role in
the number of clusters generated. When the training
samples are collected to reflect the true proportion of
each class as well as the actual number of classes as
in a training set with the same number of samples
collected in real-time, the marginal distribution of the
number of clusters p(k̃) can be maximized to obtain the
maximum likelihood estimate of α. However, in many
machine learning applications only the most prevalent
classes are available in the training set and the training
samples are almost never collected in real-time. Thus,
p(k̃) may not model a training set collected offline very
well.

One viable approach to predicting α when training
samples are not collected in real-time is to sample it
from the distribution p(α|k̃, n) (Escobar & West, 1994).
This approach although widely used in mixture density
estimation involving batch data as part of a Gibbs sam-
pler, it is not suitable for the proposed SIR algorithm,
mainly because with SIR particles themselves are a
function of α. Therefore, α has to be fixed in order for
the weight update formula to hold and thus, the SIR
algorithm to work. In this study we encode our prior
belief about the odds of encountering a new class by a
prior probability value p that indicates the prior prob-
ability of a new sample coming from one of the labeled
classes in the training set. Once a vague value for p is

obtained for a given domain, α can be estimated by
empirical Bayes by sampling a large number of samples
from a CRP for varying values of α and then picking
up the one that minimizes the difference between the
empirical and true values of p.

4. A Normally distributed data model

Both the Gibbs sampler and SIR requires the evaluation
of the predictive p(x̃i|Dj) and the marginal p(x̃i) dis-
tributions. The predictive distribution for both labeled
and unlabeled classes can be obtained by integrating
out θ. The marginal distribution can be obtained from
p(x̃i|Dj) by setting Dj an empty set. In general the
exact solution for the predictive and marginal distri-
butions does not exist and approximations are needed.
However, a closed-form solution does exist for a Nor-
mally distributed data model and a properly chosen
base distribution as presented next. We give ωj a
Gaussian distribution with mean µj and covariance Σj ;
that is, ωj ∼ N (µj ,Σj). For the mean and covariance
matrix, we use a joint conjugate prior G0:

G0 = p (µ,Σ) = N
(
µ|µ0,

Σ

κ

)
︸ ︷︷ ︸

p(µ|Σ)

×W−1 (Σ|Σ0,m)︸ ︷︷ ︸
p(Σ)

(10)
where µ0 is the prior mean and κ is a scaling constant
that controls the deviation of the class conditional
mean vectors from the prior mean. The smaller the
κ is, the larger the between class scattering will be.
The parameter Σ0 is a positive definite matrix that
encodes our prior belief about the expected Σ. The
parameter m is a scalar that is negatively correlated
with the degrees of freedom. In other words the larger
the m is the less Σ will deviate from Σ0 and vice versa.

To evaluate the update formula in (9) for SIR we need
p(xn+1|Dj). To obtain p(xn+1|Dj) we need to integrate
out θ = {µ,Σ}. Since the sample mean x̄ and the
sample covariance matrix S are sufficient statistics for
the multivariate Normally distributed data, we can
write p(µ,Σ|Dj) = p(µ,Σ|x̄j , Sj). The formula for this
posterior and its derivation is widely available in books
on multivariate statistics (Anderson, 2003). Once we
integrate out p(xn+1, µ,Σ|x̄j , Sj) first with respect to
µ and then with respect to Σ we obtain the predictive
distribution in the form of a multivariate Student-t
distribution.

In addition to p(xn+1|Dj) we also need p(xn+1) when
evaluating the decision function in (5), which is also a
multivariate Student-t distribution with Dj an empty
set.
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4.1. Estimating the parameters of the prior
model

The parameters (Σ0,m, µ0, κ) of the prior model can
be estimated offline using samples from the well-defined
classes. The maximum-likelihood estimates for Σ0 and
m do not exist. The study in (Greene & Rayens, 1989)
suggests estimating Σ0 by the unbiased and consistent
estimate Sp, i.e., the pooled covariance, and maximizing
the marginal likelihood of (nj − 1)Sj for m > d + 1
numerically to estimate m. Here, Sp is the pooled
covariance matrix defined by

Sp =
(m− d− 1)

∑k
j=1(nj − 1)Sj

n− k
(11)

where n is the total number of samples in the train-
ing set, i.e., n =

∑k
j=1 nj . The marginal distri-

bution of (nj − 1)Sj can be obtained by integrat-
ing out the joint distribution p((nj − 1)Sj ,Σj) =
p((nj−1)Sj |Σj)p(Σj) with respect to Σj . For a Normal
data model p((nj − 1)Sj |Σj) is a Wishart distribution
with a scale matrix Σj and degrees of freedom nj − 1,
i.e., (nj − 1)Sj |Σj ∼ W (Σj , nj − 1) and p(Σj) is an
inverted Wishart distribution as defined in (10). The
parameters κ and µ0 can be estimated by maximizing
the joint likelihood of x̄ and S, p(x̄, S), with respect to
κ and µ0, respectively.

5. Experiments

5.1. An illustrative example

We present an illustrative example demonstrating the
proposed algorithm discovering and modeling classes
with a 2-D simulated dataset. We generate twenty
three classes where the class covariance matrix of each
class is obtained from an inverted Wishart distribu-
tion with parameters Ψ = 10I and m = 20 and mean
vectors are equidistantly placed alongside the periph-
eries of two circles with radius 4 and 8 creating a
flower-shaped dataset. Here, I denotes the 2-D identity
matrix. Three of the twenty three classes are randomly
chosen as unrepresented. The nonexhaustive training
data contains twenty classes with each class represented
by 100 samples (a total of 2000 samples) whereas the
exhaustive testing data contains twenty three classes
with 100 samples from each (a total of 2300 samples).
The objective here is to discover and model the three
unrepresented classes while making sure samples of rep-
resented classes are classified as accurately as possible.
Figure 1a shows true class distributions for all twenty
three classes. The represented classes are shown by
solid lines and unrepresented ones by dashed lines. The
ellipses correspond to the distributions of the classes
that are at most three standard deviations away from

the mean. The testing samples are classified sequen-
tially using the SIR algorithm discussed in Section 3.2.
The precision parameter α and the number of particles
M are chosen as 1 and 500, respectively. Figures 1b, 1c,
and 1d demonstrate the online discovery and modeling
of new classes when 100, 300, and all 2300 test samples
are classified, respectively. The discovered classes are
marked by solid blue lines. All three classes are discov-
ered and their underlying distributions are successfully
recovered by generating one cluster for each class.

5.2. Bacteria detection

A total of 2054 samples from 28 classes each represent-
ing a different bacteria serovar were considered in this
study. These are the type of serovars most commonly
found in food samples. Each serovar is represented
by between 40 to 100 samples where samples are the
forward-scatter patterns characterizing the phenotype
of a bacterial colony obtained by illuminating the colony
surface by a laser light. Each scatter pattern is a gray
level image characterized by a set of 50 features. More
information about this dataset is available in (Akova
et al., 2010). Samples are randomly splitted into two
as train and test, with 70% of the samples going into
the training set and the remaining 30% in the test.
Stratified sampling is used to make sure each class is
proportionately represented in both the training and
the test sets. Four of the classes are considered un-
known and all of their samples are moved from the
training set to the test set. The nonexhaustive training
set contains 24 classes whereas the exhaustive testing
set contains 28 classes. Since the training samples are
collected offline the number of samples initially avail-
able for labeled classes may not necessarily reflect true
class proportions. To avoid introducing bias in favor of
classes with larger numbers of samples we assumed that
each labeled class is a priori likely by setting nj = 1.

The performance of the proposed SIR algorithm (NEL-
SIR) discussed in Section 3.2 is evaluated on three
fronts: classification accuracy for represented classes,
classification accuracy for unrepresented classes, and
the number of clusters discovered for each of the un-
represented classes. To compute the latter two values
each unlabeled cluster is assigned to the unrepresented
class having the majority of the samples in that class.
Classification accuracy for each unrepresented class is
computed by the ratio of the total number of samples
recovered by the corresponding clusters to the total
number of samples in that class. To see the effect of
the execution order of the test samples on the overall
results the experiment is repeated multiple times each
time with a different ordering of test samples. Using
the approach discussed in Section 3.3 the precision



Bayesian Nonexhaustive Learning for Online Discovery

-15 -10 -5 0 5 10
-15

-10

-5

0

5

10

(a) True class distributions
-15 -10 -5 0 5 10

-15

-10

-5

0

5

10

(b) 100/2300 classified
-15 -10 -5 0 5 10

-15

-10

-5

0

5

10

(c) 300/2300 classified (d) 2300/2300 classified

Figure 1. Illustration of the proposed algorithm with an artificial dataset. (a) Red dashed lines indicate unrepresented
classes. Red solid lines indicate represented classes. (b)-(d) Blue solid lines indicate newly discovered classes. Black ‘·’
marks indicate testing samples.

parameter α is predicted as 10 for a p of 0.95, i.e.,
an incoming sample a priori belongs to one of the 24
labeled classes by a probability of 0.95. The number
of particles M is chosen to be 2000.

The proposed NEL-SIR is compared against the Bayes-
NoDe algorithm proposed in (Akova et al., 2010).
Both the proposed NEL-SIR and Bayes-NoDe use
the same data model, i.e., ωj ∼ N (µj ,Σj), (µ,Σ) ∼
N
(
µ|µ0,

Σ
κ

)
×W−1 (Σ|Σ0,m). However, as briefly men-

tioned in Section 1.3, there are significant differences
between the two approaches in terms of prior mod-
eling of class distributions and performing inference
in a nonexhaustive setting. In addition to these two
algorithms we also considered the exhaustive case, i.e.,
the setting under which all 28 classes are represented in
the training set to serve as a benchmark for comparing
our results. The results including the classification
accuracies for represented as well as unrepresented
classes and the number of clusters discovered for each
unrepresented class are shown in Table 1.

Classification accuracy achieved by the proposed NEL-
SIR algorithm for represented classes is on par with
that achieved by Bayes-NoDe. Although all four un-
represented classes are successfully discovered by both
NEL-SIR and Bayes-Node, NEL-SIR tend to generate
far less number of clusters in general and achieves sig-
nificantly higher accuracy than BayesNoDe for each
unrepresented class. The average number of clusters
discovered for each unrepresented class is especially
important for practical purposes because in a real-time
biodetection system once new clusters are discovered
as unknowns, their samples has to be analyzed offline
to assess the pathogenic nature of these clusters. The
less the number of clusters discovered for each unrepre-
sented class the less time and resources offline analysis
will require.

The perfect accuracies achieved for two of the unrepre-
sented classes in the exhaustive setting indicate these
classes are well separated from other classes. For the
two well-separated classes NEL-SIR performs equally

well with the exhaustive case. These results indicate
that if the unrepresented classes are well separated
the proposed approach not only discover these classes
and recover them by a reasonable number of clusters
but also classify their samples at an accuracy compa-
rable to an exhaustive classifier. If the unrepresented
classes are not perfectly separated these classes can
still be discovered but some loss in classifier accuracy
as compared to an exhaustive classifier is inevitable.

6. Conclusions

Online class discovery is an important problem that
finds its place in many real-life applications involving
evolving datasets. In this study, in an effort to discover
emerging classes, a sequential inference algorithm based
on particle filters was proposed for a Dirichlet process
mixture model. In this approach the posterior distribu-
tion of the class indicator variables is approximated by
a discrete distribution expressed by a set of particles
and the corresponding weights. The particles and their
weights are efficiently updated each time a new sam-
ple is observed. This way the posterior distribution is
updated in a sequential manner without the need to
have access to past samples enabling efficient online
inference in a nonexhaustive setting. Our algorithm
is validated using a 28-class bacteria with four of the
classes considered unknown and promising results are
obtained with respect to classification accuracy and
class discovery.

The data model used in this study was limited with
the Normal model. The proposed approach can be
extended to problems involving more flexible class dis-
tributions by choosing a mixture model for each class
data and a hierarchical DPP model over class distribu-
tions. Additionally, the model used in our studies does
not explicitly model variation in class size as a function
of time. Modeling time can be essential for modeling
burstiness. We believe a time-dependent Dirichlet pro-
cess can be useful toward achieving this end. Owing
to the long tail behavior of DPP, with the current
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represented classes unrepresented classes
(overall accuracy) 1 2 3 4

Exhaustive case accuracy (%) 94.0 88.5 94.1 100.0 100.0
Bayes-NoDe accuracy (%) 91.2 60.5 82.8 87.6 92.5

(0.2) (3.6) (13.4) (8.1) (3.4)
avg. # of clusters - 2.7 5.5 1.7 4.0

NEL-SIR accuracy (%) 91.1 75.7 90.7 99.5 99.5
(0.4) (1.2) (8.0) (0.5) (0.7)

avg. # of clusters - 2.0 1.3 1.7 1.2

Table 1. Comparing the performance of the NEL-SIR algorithm against Bayes-NoDe and the fully exhaustive case. Numbers
in parenthesis indicate standard deviations across multiple runs.

approach the probability of discovering a new class
will converge to zero as n goes to infinity. Although
we cannot verify whether Zipf’s law holds for bacteria
population we believe a Pitman-Yor process can offer
more control over tail behavior of the prior model.
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