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Abstract

We propose a semiparametric method we call
the nonparanormal skeptic for estimating
high dimensional undirected graphical mod-
els. The underlying model is the nonpara-
normal family proposed by Liu et al. (2009).
The method exploits nonparametric rank-
based correlation coefficient estimators, in-
cluding Spearman’s rho and Kendall’s tau.
In high dimensional settings, we prove that
the nonparanormal skeptic achieves the op-
timal parametric rate of convergence for both
graph and parameter estimation. This re-
sult suggests that the nonparanormal graph-
ical model can be a safe replacement for the
Gaussian graphical model, even when the
data are Gaussian.

1. Introduction

Undirected graphical models provide a powerful frame-
work for exploring the interrelationships among a large
number of random variables, and have found routine
use in analyzing complex and high dimensional data.
An undirected graphical model for the joint distribu-
tion P of a random vector X = (X1, . . . , Xd) is as-
sociated with a graph G = (V,E), where each vertex
i corresponds to a component variable Xi. The pair
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(i, j) is not an element of the edge set E if and only if
Xi is independent of Xj given (Xk : k 6= i, j). In the
graph estimation problem, we have n observations of
the random vector X, and wish to estimate the edge
set E.

The simplest method for estimating the graph when
the dimension d is small is to assume that X has a mul-
tivariate Gaussian distribution, and then test the spar-
sity pattern of the inverse covariance or precision ma-
trix Ω = Σ−1, based on the sample covariance Σ̂n. A
drawback is that the dimensionality d must be strictly
smaller than n. In the high dimensional setting where
d > n, a number of methods have recently been pro-
posed and studied. Meinshausen & Bühlmann (2006)
propose a method based on parallel lasso regressions
of each Xi on (Xj : j 6= i). Yuan & Lin (2007)
and Banerjee et al. (2008) study the estimator con-
structed using the log-likelihood of Ω under a joint
Gaussian model, penalized by an `1 penalty on Ω to
encourage sparsity. The estimator Ω̂ can be efficiently
computed using the glasso algorithm (Friedman et al.,
2008). Other estimators have been studied based on
the use of the Dantzig selector (the gDantzig selector
of Yuan (2010)), or based on estimating a sparse pre-
cision matrix under constraints on ‖ΩΣ̂n − I‖∞ (the
CLIME estimator of Cai et al. (2011)). Strong theo-
retical properties of these estimators have been estab-
lished, including rates of convergence and consistency
of graph selection.

Despite the popularity of the Gaussian graphical
model and the theoretical properties that the high
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dimensional estimators enjoy, the Normality assump-
tion is restrictive, and conclusions inferred under this
assumption could be misleading. Liu et al. (2009)
propose the nonparanormal to relax the Gaussian as-
sumption. A random vector X belongs to a non-
paranormal family if there exists a set of univari-
ate monotonic functions {fj}dj=1 such that f(X) :=
(f1(X1), . . . , fd(Xd))T is Gaussian. The nonparanor-
mal is a type of Gaussian copula model (Klaassen &
Wellner, 1997). Liu et al. (2009) provide a learning
algorithm for this model that has the same computa-
tional cost as the glasso. The method is based on a
Winsorized estimate of the marginal transformations
fj , followed by an estimate of the precision matrix
using the transformed data. A convergence rate of
O(
√
n−1/2 log d) is established for estimating the pre-

cision matrix in the Frobenius and spectral norms.
However, it is not clear whether or not this rate of
convergence is optimal.

In this paper we show that the rate of conver-
gence obtained by Liu et al. (2009) is, in fact, not
optimal, and we present an alternative procedure
that is rate optimal. The main idea is to exploit
nonparametric rank-based statistics including Spear-
man’s rho and Kendall’s tau to directly estimate
the unknown correlation matrix, without explicitly
calculating the marginal transformations. We call
this approach the nonparanormal skeptic (since the
Spearman/Kendall estimates preempt transformations
to infer correlation). The estimated correlation matrix
is then plugged into existing parametric procedures
(the graphical lasso, CLIME, or the graphical Dantzig
selector) to obtain the final estimate of the inverse cor-
relation matrix and graph.

By leveraging existing analysis of different parametric
methods (Ravikumar et al., 2009; Cai et al., 2011), we
prove that although the nonparanormal is a strictly
larger family of distributions than the Gaussian, the
nonparanormal skeptic achieves the optimal para-
metric rate O(

√
n−1 log d) for precision matrix esti-

mation. The extra modeling flexibility thus comes
at almost no cost of statistical efficiency. Moreover,
by avoiding the estimation of the transformation func-
tions, this new approach has fewer tuning parameters
than the nonparanormal estimator proposed by Liu
et al. (2009). Numerical studies are provided to sup-
port our theory.

2. Background

In this section we briefly describe the nonparanormal
family and the Normal-score based graph estimator
proposed by Liu et al. (2009).

Let A = [Ajk] ∈ Rd×d and v = (v1, . . . , vd)T ∈
Rd. For 1 ≤ q < ∞, we define ‖v‖q =(∑d

i=1 |vi|q
)1/q

and ‖v‖∞ = max1≤i≤d |vi|. For 1 ≤
q ≤ ∞, we define the matrix `q-operator norm
as ‖A‖q = supv 6=0

‖Av‖q

‖v‖q
. For q = 1 and q =

∞, the matrix norm can be more explicitly repre-
sented as ‖A‖1 =max1≤j≤d

∑d
i=1 |Aij | and ‖A‖∞=

max1≤i≤d
∑d
j=1 |Aij |. The matrix `2-operator norm is

the leading singular value and is often called the spec-
tral norm. We also define ‖A‖max = maxj,k |Ajk|
and ‖A‖2F =

∑
j,k |Ajk|2. We denote v\j =

(v1, . . . , vj−1, vj+1, . . . , vd)T ∈ Rd−1, and similarly de-
note by A\i,\j the submatrix of A obtained by remov-
ing the ith row and jth column, and Ai,\j the ith row
of A with its jth entry removed. The notation λmin(A)
and λmax(A) is used for the smallest and largest sin-
gular values of A.

2.1. The Nonparanormal

Let f = (f1, . . . , fd) be a set of monotonic univari-
ate functions and let Σ0 ∈ Rd×d be a positive-definite
correlation matrix, with diag

(
Σ0
)

= 1. We say a d-
dimensional random variable X = (X1, . . . , Xd)T has
a nonparanormal distribution X ∼ NPNd(f,Σ0) if
f(X) := (f1(X1), . . . , fd(Xd))

T ∼ N(0,Σ0).

For continuous distributions, Liu et al. (2009) show
that the nonparanormal family is equivalent to the
Gaussian copula family (Klaassen & Wellner, 1997).
Clearly the nonparanormal family is much richer than
the Normal family. However, the conditional indepen-
dence graph is still encoded by the sparsity pattern of
Ω0 = (Σ0)−1; that is, Ω0

jk = 0 ⇔ Xj ⊥⊥ Xk | X\{j,k}
(Liu et al., 2009).

2.2. The Normal-score based Nonparanormal
Graph Estimator

Let x1, . . . , xn ∈ Rd be n data points and let
I(·) be the indicator function. We define F̂j(t) =

1
n+1

∑n
i=1 I(xij ≤ t) to be the scaled empirical cumula-

tive distribution function of Xj . Liu et al. (2009) study
estimates of the nonparanormal transformation func-
tions given by1 f̂j(t) = Φ−1

(
Tδn

[F̂j(t)]
)

, where Tδn

is a Winsorization (or truncation) operator defined as
Tδn

(x) = δn · I(x < δn) + x · I(δn ≤ x ≤ 1 − δn) +
(1 − δn) · I(x > 1 − δn) with δn = 1/(4n1/4

√
π log n).

Let Ŝns = [Ŝns
jk] be the correlation matrix of the trans-

1Instead of bFj , (Liu et al., 2009) use the empirical cu-
mulative distribution function. These two estimators are
asymptotically equivalent.
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formed data, where

Ŝns
jk =

1
n

n∑
i=1

f̂j(xij)f̂k(xik)√√√√ 1
n

n∑
i=1

f̂2
j (xij) ·

√√√√ 1
n

n∑
i=1

f̂2
k (xik)

. (2.1)

The nonparanormal estimate of the inverse correla-
tion matrix Ω̂ns can be obtained by plugging Ŝns into
the glasso. Under certain conditions, Liu et al. (2009)
show that

‖Ω̂− Ω0‖22 = OP

(
s · log d · n−1/2

)
. (2.2)

However, it is not clear whether or not the rate in (2.2)
is optimal. In the following, we show that it is not
optimal and can be greatly improved using different
estimators.

3. The Nonparanormal skeptic

In this section we propose a different approach for es-
timating Ω0 that achieves a much faster rate of con-
vergence, without explicitly estimating the transfor-
mation functions.

3.1. Main Idea

The main idea behind our alternative procedure is to
exploit Spearman’s rho and Kendall’s tau statistics
to directly estimate the unknown correlation matrix,
without explicitly calculating the marginal transfor-
mation functions fj .

Let rij be the rank of xij among x1
j , . . . , x

n
j and r̄j =

1
n

n∑
i=1

rij . We consider the following statistics:

ρ̂jk =

∑n
i=1(rij − r̄j)(rik − r̄k)√∑n

i=1(rij − r̄j)2 ·
∑n
i=1(rik − r̄k)2

,

τ̂jk =
2

n(n− 1)

∑
1≤i<i′≤n

sign
(
xij − xi

′

j

)(
xik − xi

′

k

)
.

Both can be viewed as a form of nonparametric cor-
relation between the empirical realizations of two ran-
dom variables Xj and Xk. Note that these statistics
are invariant under monotone transformations. For
Gaussian random variables there is a one-to-one map-
ping between these two statistics; details can be found
in Kruskal (1958). Let X̃j and X̃k be two indepen-
dent copies of Xj and Xk. We denote by Fj and Fk
the CDFs of Xj and Xk. The population versions of

Spearman’s rho and Kendall’s tau are given by

ρjk := Corr (Fj(Xj), Fk(Xk)) , (3.1)

τjk := Corr
(

sign(Xj − X̃j), sign(Xk − X̃k)
)
. (3.2)

Both ρjk and τjk are association measures based on
the notion of concordance. We call two pairs of real
numbers (s, t) and (u, v) concordant if (s−t)(u−v) > 0
and disconcordant if (s− t)(u− v) < 0.

For Gaussian copula distributions, the following im-
portant lemma connects Spearman’s rho and Kendall’s
tau to the underlying Pearson correlation coefficient
Σ0
jk.

Lemma 3.1 (Kruskal (1958)). Assuming X ∼
NPN(f,Σ0), we have

Σ0
jk = 2 sin

(π
6
ρjk

)
= sin

(π
2
τjk

)
. (3.3)

Motivated by this lemma, we define the following es-
timators Ŝρ = [Ŝρjk] and Ŝτ = [Ŝτjk] for the unknown
correlation matrix Σ0:

Ŝρjk = 2 sin
(π

6
ρ̂jk

)
(3.4)

Ŝτjk = 2 sin
(π

2
τ̂jk

)
(3.5)

for j 6= k, and Ŝρjj = Ŝτjj = 1. As will be shown
in later sections, the final graph estimators based on
Spearman’s rho and Kendall’s tau have similar theo-
retical performance. In the following sections we omit
the superscript ρ and τ and simply denote the esti-
mated correlation matrix as Ŝ.

3.2. The Nonparanormal skeptic with
Different Graph Estimators

The estimated correlation matrices Ŝτ and Ŝρ can
be directly plugged into different parametric Gaussian
graph estimators to obtain the final precision matrix
and graph estimates.

3.2.1. The Nonparanormal skeptic with the
Graphical Dantzig Selector

The main idea of the graphical Dantzig selector is to
take advantage of the connection between multivariate
linear regression and entries of the inverse covariance
matrix. The detailed algorithm is given below, where
δ is a tuning parameter.
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• Estimation: For j = 1, . . . , d, calculate

θ̂j= arg min
θ∈Rd−1

‖θ‖1 s.t. ‖Ŝ\j,j − Ŝ\j,\jθ‖∞ ≤ δ,(3.6)

Ω̂jj =
[
1− 2

(
θ̂j
)T
Ŝ\j,j+

(
θ̂j
)T
Ŝ\j,\j θ̂

j

]
,(3.7)

and Ω̂\j,j = −Ω̂jj θ̂j .(3.8)

• Symmetrization:

Ω̂ = arg min
Ω=ΩT

‖Ω− Ω̂‖1. (3.9)

In the first step, for jth dimension, we regress Xj on
X\j using the Dantzig selector. The obtained regres-
sion coefficients θ̂j can then be exploited to estimate
the elements Ω0

jj and Ω0
\j,j in the inverse correlation

matrix Ω0. Within each iteration, the Dantzig selector
selector in (3.6) can be formulated as a linear program.

3.2.2. The Nonparanormal skeptic with
CLIME

The estimated correlation coefficient matrix Ŝ can also
be plugged into the CLIME estimator (Cai et al.,
2011), which is defined by

Ω̂ = arg min
Ω

∑
j,k

|Ωjk| s.t. ‖ŜΩ− Id‖max ≤ ∆, (3.10)

where ∆ is the tuning parameter. Cai et al. (2011)
show that this convex optimization can be decomposed
into d vector minimization problems, each of which
can be cast as a linear program. Thus, CLIME has
the potential to scale to very large problems.

3.2.3. The Nonparanormal skeptic with the
Graphical Lasso

We can also plug in the estimated correlation coeffi-
cient matrix Ŝ into the graphical lasso:

Ω̂ = arg min
Ω�0

{
tr
(
ŜΩ
)
− log |Ω|+ λ

∑
j 6=k

|Ωjk|
}
. (3.11)

One thing to note is that Ŝ may not be positive
semidefinite. While the formulation (3.11) is convex,
certain algorithms (like the blockwise-coordinate de-
scent algorithm or Friedman et al. (2008)) may fail.
However, other algorithms such as projected Newton’s
method or first-order projection do not have such pos-
itive semidefiniteness assumptions.

3.3. Computational Complexity

Compared to the corresponding parametric methods
like the graphical lasso, graphical Dantzig selector,

or CLIME, the only extra cost of the nonparanormal
skeptic is the computation of Ŝ, which requires the
calculation of d(d − 1)/2 pairwise Spearman’s rho or
Kendal’s tau statistics. A naive implementation of
Kendall’s tau matrix requires O(d2n2) computation.
However, efficient algorithms based on sorting and
balanced binary trees have been developed to calcu-
late this with computational complexity O(d2n log n)
(Christensen, 2005).

If we assume that each data point is unique (no “ties”
in computing ranks), then Spearman’s rho statistic can
be written as

ρ̂jk = 1− 6
n(n2 − 1)

n∑
i=1

(
rij − rik

)2
, (3.12)

where rij is the rank of xij among x1
j , . . . , x

n
j . Once the

ranks are obtained, the statistic Ŝρ can be computed
with cost O(d2n log n).

4. Theoretical Properties

We now present our main result, which shows that Ŝρ

and Ŝτ estimate the true correlation matrix Σ0 at the
optimal parametric rate in high dimensions. Such a
result allows us to leverage existing analyses of dif-
ferent parametric methods (e.g., the graphical lasso,
graphical Dantzig selector, and CLIME) to analyze the
nonparanormal skeptic estimator.

4.1. Concentration Properties of the
Estimated Correlation Matrices

We first prove the concentration properties of the esti-
mators Ŝρ and Ŝτ . Let Σ0

jk be the Pearson correlation
coefficient between fj(Xj) and fk(Xk). In terms of
the ‖ · ‖max norm, we show that both Ŝρ and Ŝτ are
close to Σ0 at the optimal parametric rate. Our re-
sults are based on different versions of the Hoeffding
inequalities for U-statistics.

Theorem 4.1. For any 0 < α < 1, whenever

n ≥ max

{
1

6 log d

(
α

1− α

)2

,
α
√

6
3
·
√

n

log d
+ 2

}
,

we have

P

(
sup
jk

∣∣∣Ŝρjk − Σ0
jk

∣∣∣ > 3π
√

6
α

√
log d
n

)
≤ 2
d2
.

Therefore, let α =
3
√

6
8

, then with probability at least
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1− d2, for n ≥ 21
log d

+ 2, we have

sup
jk

∣∣∣Ŝρjk − Σ0
jk

∣∣∣ ≤ 8π

√
log d
n

. (4.1)

Proof. The proof can be found in Theorem 4.1 of the
long version of this paper; see Liu et al. (2012).

The next theorem illustrates the concentration prop-
erty of Ŝτ .

Theorem 4.2. For any n > 1, with probability at least
1− 1/d, we have

sup
jk

∣∣∣Ŝτjk − Σ0
jk

∣∣∣ ≤ 2.45π

√
log d
n

. (4.2)

Proof. The proof can be found in Theorem 4.2 of the
long version of this paper; see Liu et al. (2012).

This leads to the following “meta-theorem,” show-
ing that even though the nonparanormal skeptic is
a semiparametric estimator, it achieves the optimal
parametric rate in high dimensions.

Theorem 4.3. Suppose we plug the estimated corre-
lation matrix Ŝρ or Ŝτ into the parametric graphical
lasso (or the graphical Dantzig selector, or CLIME).
Under the same conditions on Σ0 that ensure the con-
sistency of these parametric methods, the nonpara-
normal skeptic achieves the same parametric rate of
convergence for both precision matrix estimation and
graph recovery.

Proof. The proof is based on the observation that the
sample correlation matrix Ŝ is a sufficient statistic
for all three methods—the graphical lasso, graphical
Dantzig selector, and CLIME. The conclusions of the
analysis of Ravikumar et al. (2009); Cai et al. (2011)
hold as long as there exists some constant c such that

P

(
‖Ŝ − Σ0‖max > c

√
log d
n

)
≤ 1− 1

d
. (4.3)

This condition is guaranteed from (4.1) and (4.2) of
Theorems 4.1 and 4.2.

Corollary 4.1. Over all the parameter spaces of Σ0

such that the graphical lasso, graphical Dantzig, or
CLIME are minimax optimal under Gaussian models,
the corresponding nonparanormal skeptic estimator
is also minimax optimal for the same parameter space
of Σ0 under the nonparanormal model.

Remark 4.1. Even though in this section we only
present the results on the graphical Dantzig selector,
graphical lasso, and CLIME, similar arguments should
hold for almost almost all methods that use the corre-
lation matrix Σ0 as a sufficient statistic.

5. Experimental Results

In this section we investigate the empirical perfor-
mance of different graph estimation methods on both
synthetic and real datasets. In particular we consider
the following methods:

• Normal – the Gaussian graphical model.

• npn-spearman – the nonparanormal skeptic using
Spearman’s rho.

• npn-tau – the nonparanormal skeptic using the
Kendall’s tau.

More thorough numerical comparisons can be found in
the longer technical report (Liu et al., 2012).

5.1. Numerical Simulations

We adopt the same data generating procedure as
in Liu et al. (2009). To generate a d-dimensional
sparse graph G = (V,E), let V = {1, . . . , d} cor-
respond to variables X = (X1, . . . , Xd). We asso-
ciate each index j ∈ {1, . . . , d} with a bivariate data
point (Y (1)

j , Y
(2)
j ) ∈ [0, 1]2 where Y

(k)
1 , . . . , Y

(k)
n ∼

Uniform[0, 1] for k = 1, 2. Each pair of vertices (i, j)
is included in the edge set E with probability

P
(

(i, j) ∈ E
)

=
1√
2π

exp
(
−‖yi − yj‖

2
n

2s

)
(5.1)

where yi := (y(1)
i , y

(2)
i ) is the empirical observation of

(Y (1)
i , Y

(2)
i ) and ‖ · ‖n represents the Euclidean dis-

tance. Here, s = 0.125 is a parameter that controls
the sparsity level of the generated graph. We restrict
the maximum degree of the graph to four and build the
inverse correlation matrix Ω0 according to Ω0

jk = 1 if
j = k, Ω0

jk = 0.245 if (j, k) ∈ E, and Ω0
jk = 0 other-

wise; the value 0.245 guarantees positive definiteness
of Ω0. Let Σ0 =

(
Ω0
)−1. To obtain the correlation ma-

trix, we simply rescale Σ0 so that all diagonal elements
are one. We then sample n data points x1, . . . , xn from
the nonparanormal distribution NPNd(f0,Σ0) where
for simplicity we use the same univariate transforma-
tions on each dimension, i.e., f0

1 = . . . = f0
d = f0.

To sample data from the nonparanormal distribution,
we also need g0 := (f0)−1. We use the power trans-
formation g0(t) = sign(t)|t|3 and the Gaussian CDF
transformation g0(t) = Φ

(
t−0.05

0.4

)
subject to certain

identifiability conditions.



The Nonparanormal skeptic

To generate synthetic data, we set d = 100, resulting
in
(

100
2

)
+ 100 = 5, 050 parameters to be estimated.

The sample sizes are varied between n = 100, 200
and 500. Three conditions are considered, correspond-
ing to using the power transformation, the Gaussian
CDF transformation, and linear transformation (or no
transformation).

The nonparanormal skeptic estimators npn-spearman
and npn-tau are two-step procedures. In the first step
we obtain an estimate Ŝ of the correlation matrix; in
the second step we plug Ŝ into a parametric graph es-
timation procedure. In this numerical study, we con-
sider the graphical lasso, parallel lassos (Meinshausen-
Bühlmann), and the Dantzig selector. Further details
can be found in Liu et al. (2012).

We adopt false positive and false negative rates to eval-
uate the graph estimation performance. Let Ĝλ =
(V, Êλ) be an estimated graph using the regularization
parameter λ in the graphical lasso procedure (3.11).
The number of false positives when using the regular-
ization parameter λ is

FP(λ) := number of edges in Êλ not in E (5.2)

The number of false negatives at λ is defined as

FN(λ) := number of edges in E not in Êλ. (5.3)

We further define the false negative rate (FNR) and
false positive rate (FPR) as

FNR(λ) :=
FN(λ)
|E|

FPR(λ) :=
FP(λ)[(
d
2

)
− |E|

] . (5.4)

Let Λ be the set of all regularization parameters used
to create the full path. The oracle regularization pa-
rameter λ∗ is defined as

λ∗ := arg minλ∈Λ {FNR(λ) + FPR(λ)} .

The oracle score is defined to be FNR(λ∗) + FPR(λ∗).
Let FPR := FPR(λ∗) and FNR := FNR(λ∗). Table
5.1 provides numerical comparisons of the three meth-
ods on datasets with different transformations using
two graph estimation algorithms (glasso and parallel
lasso methods), where we repeat the experiments 100
times and report the average FPR and FNR values
with the corresponding standard errors in the paren-
theses. We also conducted experiments using the
graphical Dantzig selector. Since it achieves perfor-
mance similar to the parallel lasso procedure, we do
not show its quantitative results.

To illustrate the overall performance of the methods
over the full regularization paths, the averaged ROC
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Figure 2. The nonparanormal skeptic graph estimated
from the S&P 500 stock data from Jan. 1, 2003 to Jan. 1,
2008. Nodes are colored according to their GICS sectors.

curves for n = 200, d = 100 over 100 trials are shown in
Figure 1, using

(
FPR(λ), 1− FNR(λ)

)
. From the “no

transform” plot, we see that when the data are truly
Gaussian, there is almost no difference between nor-
mal, npn-spearman, and npn-kendall. From the power
transformation and CDF transformation plots in Fig-
ures 1, we see that the performance of the nonpara-
nomal skeptic estimators (npn-spearman and npn-tau)
are comparable. In this case, both methods signifi-
cantly outperform the corresponding parametric meth-
ods (the graphical lasso, parallel lassos, or graphical
Dantzig selector).

5.2. Equities Data

In this section we apply the nonparanormal skep-
tic on the stock price data from Yahoo! Finance
(finance.yahoo.com). We collected the daily clos-
ing prices for 452 stocks that were consistently in the
S&P 500 index between January 1, 2003 and Jan-
uary 1, 2008. This gives altogether 1,257 data points,
each data point corresponding to the vector of closing
prices on a trading day. With St,j denoting the clos-
ing price of stock j on day t, we consider the variables
Xtj = log (St,j/St−1,j) and build graphs over the in-
dices j. We simply treat the instances Xt as indepen-
dent replicates, even though they form a time series.
We Winsorize every stock so that its data points are
within six times the mean absolute deviation from the
sample average.

The 452 stocks are categorized into 10 Global
Industry Classification Standard (GICS) sectors,
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Figure 1. ROC curves for the cdf, linear (or no transformation) and power transformations (top, middle, bottom) using
the glasso, parallel lasso and graphical Dantzig selector. Here n = 200 and d = 100.

including Consumer Discretionary (70 stocks),
Consumer Staples (35 stocks), Energy (37 stocks),
Financials (74 stocks), Health Care (46 stocks),
Industrials (59 stocks), Information Technology
(64 stocks) Telecommunications Services (6
stocks), Materials (29 stocks), and Utilities (32
stocks). It is expected that stocks from the same
GICS sector should tend to be clustered together.
Figure 2 illustrates the estimated npn-spearman graph,
with the nodes colored according to the GICS sector
of the corresponding stock. The tuning parameter
is automatically selected using the StARS stability
based approach (Liu et al., 2010). We see that stocks
from the same GICS sector tend to be grouped
together.

6. Conclusions and Acknowledgement

We proposed the nonparanormal skeptic, which uses
Spearman and Kendall statistics to estimate correla-
tion matrices. The method is computationally effi-
cient, and can be viewed as an alternative to esti-
mation of the transformations in the nonparanormal
model. We showed that the method achieves the op-
timal parametric rate of convergence for both graph
and parameter estimation.

The research of Han Liu, John Lafferty, and Larry
Wasserman was supported by NSF grant IIS-1116730
and AFOSR contract FA9550-09-1-0373.
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glasso parallel lasso

Normal Spearman Kendall Normal Spearman Kendall

tf n FPR(%) FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR

cdf 100 26(6.9) 38(9.2) 11(3.4) 15(3.6) 11(3.2) 15(3.6) 25(5.5) 44(6.4) 11(2.6) 16(4.4) 11(2.7) 16(4.4)
200 18(6.7) 32(17.2) 6(2.2) 6(2.4) 6(2.1) 6(2.4) 20(4.6) 30(5.4) 5(1.7) 5(2.6) 5(1.9) 5(2.4)
500 11(4.2) 19(20.9) 3(1.6) 2(1.4) 3(1.6) 2(1.4) 11(2.9) 12(3.4) 1(0.6) 1(0.9) 1(0.6) 1(0.8)

normal 100 11(2.8) 12(3.2) 11(2.6) 14(3.5) 11(2.8) 15(3.5) 9(2.5) 14(3.2) 11(2.8) 16(3.6) 11(2.6) 16(3.4)
200 5(1.5) 5(4.1) 6(2.0) 6(2.1) 6(2.1) 6(2.3) 4(1.6) 5(2.0) 5(1.5) 6(2.4) 5(1.6) 6(2.3)
500 2(0.9) 1(0.7) 2(0.9) 1(1.2) 2(0.9) 1(1.2) 1(0.6) 1(1.1) 1(0.6) 1(1.1) 1(0.6) 1(1.3)

power 100 25(5.0) 32(6.7) 11(3.3) 14(3.6) 12(3.5) 14(3.7) 18(4.2) 33(5.3) 11(3.1) 16(4.2) 10(3.3) 17(4.2)
200 19(4.2) 18(6.4) 6(2.7) 6(2.7) 6(2.6) 6(2.7) 14(2.9) 18(4.1) 5(1.5) 6(2.2) 5(1.6) 6(2.2)
500 9(2.3) 8(3.0) 2(1.3) 1(1.3) 2(1.5) 1(1.3) 7(1.8) 6(2.0) 1(0.5) 1(0.8) 1(0.6) 1(0.7)

Table 1. Quantitative comparison of the three methods on simulated datasets using different nonparanormal transforma-
tions. The graphs are estimated using the glasso and parallel lasso algorithms.
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