
Fast classification using sparse decision DAGs

Djalel Benbouzid1 djalel.benbouzid@gmail.com
Róbert Busa-Fekete1,2 busarobi@gmail.com
Balázs Kégl1 balazs.kegl@gmail.com
1LAL/LRI, University of Paris-Sud, CNRS, 91898 Orsay, France

2Research Group on Artificial Intelligence of the Hungarian Academy of Sciences and University of Szeged, Aradi
vértanúk tere 1., H-6720 Szeged, Hungary

Abstract

In this paper we propose an algorithm that
builds sparse decision DAGs (directed acyclic
graphs) from a list of base classifiers pro-
vided by an external learning method such
as AdaBoost. The basic idea is to cast the
DAG design task as a Markov decision pro-
cess. Each instance can decide to use or to
skip each base classifier, based on the current
state of the classifier being built. The re-
sult is a sparse decision DAG where the base
classifiers are selected in a data-dependent
way. The method has a single hyperpa-
rameter with a clear semantics of control-
ling the accuracy/speed trade-off. The al-
gorithm is competitive with state-of-the-art
cascade detectors on three object-detection
benchmarks, and it clearly outperforms them
when there is a small number of base classi-
fiers. Unlike cascades, it is also readily appli-
cable for multi-class classification. Using the
multi-class setup, we show on a benchmark
Web page ranking data set that we can sig-
nificantly improve the decision speed without
harming the performance of the ranker.

1. Introduction

There are numerous applications where the computa-
tional requirements of classifying a test instance are
as important as the performance of the classifier it-
self. Object detection in images (Viola & Jones, 2004)
and web page ranking (Chapelle & Chang, 2011) are
well-known examples. A more recent application do-
main with similar requirements is trigger design in

Appearing in Proceedings of the 29 th International Confer-
ence on Machine Learning, Edinburgh, Scotland, UK, 2012.
Copyright 2012 by the author(s)/owner(s).

high energy physics (Gligorov, 2011). Most of these
applications come with another common feature: the
negative class (usually called noise or background)
sometimes has orders of magnitudes higher probabil-
ity than the positive class. Besides the testing time
constraints, this also makes training difficult: tradi-
tional classification-error-based measures are not ade-
quate, and using prior class probabilities in construct-
ing training samples leads to either enormous data
sizes or little representativity of the positive class.

A common solution to these problems is to design cas-
cade classifiers (Viola & Jones, 2004). A cascade clas-
sifier consists of stages. In each stage a binary clas-
sifier attempts to eliminate background instances by
classifying them negatively. Positive classification in
inner stages sends the instance to the next stage, so
detection can only be made in the last stage. By using
simple and fast classifiers in the first stages, “easy”
background instances can be rejected fast, shorten-
ing the expected testing time. The cascade structure
also allows us to use different training sets in differ-
ent stages, having more difficult background samples
in later stages.

Cascade classifiers, however, have many disadvantages
in both the training and test phases. The training pro-
cess requires a lot of hand-tuning of control parame-
ters, and it is non-trivial how to handle the trade-
off between the performance and the complexity of
the cascade. Also, each individual stage needs to be
trained with examples that have been classified posi-
tively by all the previous stages, which becomes dif-
ficult to satisfy in the later stages. Moreover, during
test time, the cascade structure itself has several draw-
backs. First, for a given stage, the margin information
of a test example is lost and is not exploited in the
subsequent stages. Second, all the positive instances
have to pass through all the stages for a correct clas-

Fast classification using sparse decision DAGs

sification. Finally, extending the cascade architecture
to the multi-class case is non-trivial. For example in
web page ranking, it is just as crucial to make a fast
prediction on the relevance of a web page to a query as
in object detection (Chapelle et al., 2011a), but unlike
in object detection, human annotation often provides
more than two relevance levels.

In this paper we propose a method intended to over-
come these problems. In our setup we assume that we
are given a sequence of low-complexity, possibly multi-
class base classifiers (or features) sorted by importance
or quality. Our strategy is to design a controller or
a decision maker which decides which base classifiers
should be evaluated for a given instance. The con-
troller makes its decision sequentially based on the out-
put of the base classifiers evaluated so far. It has three
possibilities in each step: 1) it can decide to continue
the classification by evaluating the next classifier, 2)
skip a classifier by jumping over it, or 3) quit and use
the current combined classifier. The goal of the con-
troller is to achieve a good performance with as few
base classifier evaluations as possible. This flexible
setup can accommodate any performance evaluation
metric and an arbitrary computational cost function.
Designing the controller can be naturally cast into a
Markov decision process (MDP) framework where the
roles are the following: the policy is the controller, the
index of the base classifier and the output of classi-
fier constitute the states, the alternatives correspond
to the actions, and the rewards are defined based on
the target metric and the cost of evaluating the base
classifiers.

Our approach has several advantages over cascades.
First, we can eliminate stages. Similar to SoftCas-
cade (Bourdev & Brandt, 2005), the base classifiers
do not have to be organized into a small number
of stages before or while learning the cascade. Sec-
ond, we can easily control the trade-off between the
average number of evaluated base classifiers and the
quality of the classification by combining these two
competing goals into an appropriate reward. The
form of the reward can also easily accommodate cost-
sensitivity (Saberian & Vasconcelos, 2010) of the base
classifiers although we will not investigate this is-
sue here. The fact that some base classifiers can be
skipped has an important consequence: the resulting
classifier is sparse, moreover, the number and identities
of base classifiers depend on the particular instances.
Third, eliminating stages allows each instance to “de-
cide” its own path within the list of base-classifiers.
Theoretically, we could have as many different paths as
training instances, but, a-posteriori, we observe clus-
tering in the “path-space”. Fourth, eliminating stages

also greatly simplifies the design. Our algorithm is
basically turn-key: it comes with an important design
parameter (the trade-off coefficient between accuracy
and speed) and a couple of technical hyperparame-
ters of the MDP algorithm that can be kept constant
across the benchmark problems we use. Finally, the
multi-class extension of the technique is quite straight-
forward.

Allowing skipping is an important feature of the al-
gorithm. The result of this design choice is that the
structure of the learned classifier is not a cascade, but a
more general directed acyclic graph or a decision DAG.
In fact, the main reason for sticking to the cascade
design is that it is easy to control with semi-manual
heuristics. Once the construction is automatic, keep-
ing the cascade architecture is no longer a necessary
constraint. Allowing skipping is also a crucial differ-
ence compared to the approach of (Póczos et al., 2009)
who also proposed to learn a cascade in an MDP setup.
While their policy simply designs optimal thresholds
in stages of a classical cascade, MDDAG outputs a
classifier with a different structure. Our method can
also be related to the sequential classifier design of
(Dulac-Arnold et al., 2011). In their approach the ac-
tion space is much larger: at any state the controler
can decide to jump to any of the base classifiers, and
so the action space grows with the number of base
learners. Whereas this design choice makes feature se-
lection more flexible, it also generates a harder learning
problem for the MDP.

The paper is organized as follows. In Section 2 we
describe the algorithm, then in Section 3 we present
our experimental results. In Section 4 we discuss the
algorithm and its connection with existing methods,
and in Section 5 we draw some pertinent conclusions.

2. The MDDAG algorithm

We will assume that we are given a sequence of N
base classifiers H = (h1, . . . ,hN). Although in most
cases cascades are built for binary classification, we
will describe the method for the more general multi-
class case, which means that hj : X → RK , where X
is the input space and K is the number of classes. The
semantics of h is that, given an observation x ∈ X , it
votes for class ` if its `th element h`(x) is positive, and
votes against class ` if h`(x) is negative. The absolute
value |h`(x)| can be interpreted as the confidence of
the vote. This assumption is naturally satisfied by the
output of AdaBoost.MH (Schapire & Singer, 1999),
but in principle any algorithm that builds its final clas-
sifier as a linear combination of simpler functions can
be used to provide H. In the case of AdaBoost.MH
or multi-class neural networks, the final (or strong or

Fast classification using sparse decision DAGs

averaged) classifier defined by the full sequence H is
f(x) =

∑N
j=1 hj(x), and its prediction for the class in-

dex of x is ̂̀ = arg max` f`(x). In binary detection, f
is usually used as a scoring function. The observation
x is classified as positive if f1(x) = −f2(x) > θ and
background otherwise. The threshold θ is a free pa-
rameter that can be tuned to achieve, for instance, a
given false positive rate.

The goal of the MDDAG (Markov decision direct
acyclic graph) algorithm is to build a sparse final clas-
sifier from H that does not use all the base classifiers,
and which selects them in a way depending on the in-
stance x to be classified. For a given observation x, we
process the base classifiers in their original order. For
each base classifier hj , we choose from among three
possible actions: 1) we Evaluate hj and continue, 2)
we Skip hj and continue, or 3) we Quit and return
the classifier built so far. Let

bj(x) = 1− I {aj = Skip ∨ ∃j′ < j : aj′ = Quit} (1)

be the indicator that hj is evaluated on x, where aj ∈
{Eval,Skip,Quit} is the action taken at step j and
the indicator function I {A} is 1 if its argument A is
true and 0 otherwise. Then the final classifier built by
the procedure is

f (N)(x) =
N∑

j=1

bj(x)hj(x). (2)

The decision on action aj will be made based on the
index of the base classifier j and the output vector of
the classifier

f (j)(x) =
j∑

j′=1

bj′(x)hj′(x). (3)

built up to step j.1 Formally, aj = π
(
(sj(x)

)
, where

sj(x) =
(
f

(j−1)
1 (x), . . . , f (j−1)

K (x), j − 1
)
∈ RK × N+

(4)
is the state we are in before visiting hj , and π is a policy
that determines the action in state sj . The initial state
s1 is the zero vector with K + 1 elements.

This setup formally defines a Markov decision process
(MDP). An MDP is a 4-tupleM = (S,A,P,R), where
S is the (possibly infinite) state space and A is the

1When using AdaBoost.MH, the base classifiers are
binary hj(x) = {±αj}K , and we normalize the output (3)

by
PN

j=1 αj , but since this factor is constant, the only rea-
son to do so is to make the range of the state space uniform
across experiments.

countable set of actions. P : S × S ×A → [0, 1] is the
transition probability kernel which defines the random
transitions s(t+1) ∼ P(·|s(t), a(t)) from a state s(t) ap-
plying the action a(t), and R : R × S × A → [0, 1]
defines the distribution R(·|s(t), a(t)) of the immediate
reward r(t) for each state-action pair. A deterministic
policy π assigns an action to each state π : S → A. We
will only use undiscounted and episodic MDPs where
the policy π is evaluated using the expected sum of
rewards

% = E

{
T∑

t=1

r(t)

}
(5)

with a finite horizon T . In the episodic setup we also
have an initial state (s1 in our case) and a terminal
state s∞ which is impossible to leave. In our setup,
the state s(t) is equivalent to sj(x) (4) with j = t. The
action Quit brings the process to the terminal state
s∞. Note that in s(T) only the Quit action is allowed.

2.1. The rewards

As our primary goal is to achieve a good performance
in terms of the evaluation metric of interest, we will
penalize the error of f (t) when the action a(t) = Quit
is applied. The setup can handle any loss function.
Here, we will use the multi-class 0-1 loss function

LI(f , (x, `)) = I
{

f`(x)−max
`′ 6=`

f`′(x) < 0
}

and the multi-class exponential loss function

Lexp(f , (x, `)) = exp

 K∑
`′ 6=`

f`′(x)− f`(x)

 ,

where the training observations (x, `) ∈ Rd ×
{1, . . . ,K} are drawn from a distribution D. Note that
in the binary case, LI and Lexp recover the classical bi-
nary notions.

With these notations, the reward for the Quit action
comes from the distribution

R(r|s(t),Quit) =

P(x,`)∼D

(
− L(f , (x, `))|s(t) = (f (t−1)(x), t− 1)

)
.

(6)

From now on we will refer to our algorithm as
MDDAG.I or MDDAG.EXP when we use 0-1 loss
or exponential loss, respectively. In principle, any of
the usual convex upper bounds (e.g., logistic, hinge,
quadratic) could be used in the MDP framework. The
exponential loss function was inspired by the setup
of AdaBoost (Freund & Schapire, 1997; Schapire &
Singer, 1999).

Fast classification using sparse decision DAGs

To encourage sparsity, we will also penalize each eval-
uated base classifier h by a uniform fixed negative re-
ward

R(r|s,Eval) = δ(−β − r), (7)

where δ is the Dirac delta and β is a hyperparame-
ter that represents the accuracy-speed trade-off. Note
that, again, this flexible setup can accommodate any
cost function penalizing the evaluation of base classi-
fiers. Finally, choosing the Skip action does not incur
any reward, so R(r|s,Skip) = δ(0).

The goal of reinforcement learning (RL) in our case is
to learn a policy which maximizes the expected sum
of rewards (5). Since in our setup, the transition P is
deterministic given the observation x, the expectation
in (5) is taken with respect to the random input point
(x, `). This means that the global objective of the
MDP is to minimize

E(x,`)∼D

L
(
f , (x, `)

)
+ β

N∑
j=1

bj(x)

. (8)

2.2. Learning the policy

There are several efficient algorithms available for
learning the policy π using an iid sample D =(
(x1, `1), . . . , (xn, `n)

)
drawn from D (Sutton & Barto,

1998). When P and R are unknown, model-free
methods are commonly used for learning the policy
π. These methods directly learn a value function
(the expected reward in a state or for a state-action
pair) and derive a policy from it. Among model-free
RL algorithms, temporal-difference (TD) learning al-
gorithms are the most widely used. They can be di-
vided into two groups: off-policy and on-policy meth-
ods. In the case of off-policy methods the policy search
method learns about one policy while following an-
other, whereas in the on-policy case the policy search
algorithm seeks to improve the current policy by main-
taining sufficient exploration. On-policy methods have
an appealing practical advantage: they usually con-
verge faster to the optimal policy than off-policy meth-
ods.

We shall use the SARSA(λ) algorithm (Rummery
& Niranjan, 1994) with replacing traces to learn the
policy π. For more details, we refer the reader
to (Szepesvári, 2010). SARSA(λ) is an on-policy
method, so to make sure that all policies can be vis-
ited with nonzero probability, we use an ε-greedy ex-
ploration strategy. To be precise, we apply SARSA in
an episodic setup: we use a random training instance x
from D per episode. The instance follows the current
policy with probability 1 − ε and chooses a random
action with probability ε. The instance observes the

immediate rewards defined based on some loss func-
tion, or (7) after each action. The policy is updated
during the episode according to SARSA(λ).

In our experiments we used AdaBoost.MH2 to ob-
tain a pool of weak classifiers H, and the RL Tool-
box 2.03 for training the MDDAG. We ran Ad-
aBoost.MH for N = 1000 iterations, and then
trained SARSA(λ) on the same training set. The
hyperparameters of SARSA(λ) were kept constant
throughout the experiments. We set λ to 0.95. In
principle, the learning rate should decrease to 0, but
we found that this setting forced the algorithm to con-
verge too fast to suboptimal solutions. Instead we set
the learning rate to a constant 0.2, we evaluated the
current policy after every 10000 episodes, and we se-
lected the best policy based on their performance also
on the training set (overfitting the MDP was a non-
issue). The exploration term ε was decreased gradually
as 0.3 × 1/d 10000

τ e, where τ is the number of training
episodes. We trained SARSA(λ) for 106 episodes.

As a final remark, note that maximizing (8) over the
data set D is equivalent to minimizing a margin-based
loss with an L0 constraint. If rI (6) is used as a reward,
the loss is also non-convex, but minimizing a loss with
an L0 constraint is NP-hard even if the loss is con-
vex (Davis et al., 1997). So, what we are aiming at is
an MDP-based heuristic to solve an NP-hard problem,
something that is not without precedent (Ejov et al.,
2004). This equivalence implies that even though the
algorithm would converge in the ideal case (with a de-
creasing learning rate), in principle, convergence can
be exponentially slow in n. In practice, however, we
had no problem finding good policies in reasonable
training time.

3. Experiments

In Section 3.1 we first verify the sparsity and hetero-
geneity hypotheses on a synthetic toy example. In
Section 3.2, we compare MDDAG with state-of-the-
art cascade detectors on three object detection bench-
marks. After, in Section 3.3 we show how the multi-
class version of MDDAG performs on a benchmark
web page ranking problem.

3.1. Synthetic data

The aim of this experiment was to verify whether
MDDAG can learn the subset of “useful” base clas-
sifiers in a data-dependent way. We created a two-
dimensional binary dataset with real-valued features

2http://www.multiboost.org (Benbouzid et al., 2012).
3http://www.igi.tugraz.at/ril-toolbox/general/

overview.html

http://www.multiboost.org
http://www.igi.tugraz.at/ril-toolbox/general/overview.html
http://www.igi.tugraz.at/ril-toolbox/general/overview.html

Fast classification using sparse decision DAGs

where the positive class was composed of two easily
separable clusters (see Figure 1(a)). This is a typical
case where AdaBoost or a traditional cascade is sub-
optimal since they both have to use all the base classi-
fiers for all the positive instances (Bourdev & Brandt,
2005).

We ran MDDAG.I with β = 0.01 on the 1000 decision
stumps learned by AdaBoost.MH. In Figure 1(b),
we plot the number of base classifiers used for each
individual positive instance as a function of the two-
dimensional instance itself. As expected, the “easier”
the instance, the smaller the number of base classifiers
are needed for classification. Figure 1(c) confirms our
second hypothesis: base classifiers are used selectively,
depending on whether the positive instance is in the
blue or red cluster.

The lower panel of Figure 1 shows a graphical represen-
tation of the MDDAG classifier f acting on a data set
D. The nodes of the directed acyclic graph (DAG) are
the base classifiers in H. Each observation (x, `) ∈ D
determines a set of edges

Ux = {(j, j′) : bj(x) = bj′(x) = 1∧
bj′′(x) = 0 for all j < j′′ < j′}.

In other words, we take all the base classifiers that
are evaluated on the instance (x, `) and connect the
nodes representing these base classifiers with a direct
edge. The edge set Ux is called the classification path
of x which constitutes a directed path by definition.
The DAG we plot in Figure 1(d) includes all of the
edges U =

⋃
(x,1)∈D Ux generated by the positive in-

stances taken from the training data D. The width
of an edge (j, j′) is proportional to its multiplicity
#{x : (j, j′) ∈ Ux, (x, 1) ∈ D}. The color of an edge
(j, j′) represents the proportion of observations taken
from the blue and red sub-classes, whose classification
path includes (j, j′). Similarly, the size of the node
is proportional to #{x : bj(x) = 1, (x, 1) ∈ D}, and
the color of the nodes represent sub-class proportions.
The structure of the DAG also agrees with our orig-
inal intuition, namely that the bulk of the two sub-
classes are separated early and follow different classifi-
cation paths. It is also worth noting that even though
the number of possible classification paths is exponen-
tially large, the number of realized paths is quite small.
Some “noisy” points along the main diagonal (border
between the subclasses) generate rare subpaths, but
the bulk of the data mostly follows two paths.

3.2. Binary detection benchmarks

In these experiments we applied MDDAG on three
image data sets often used for benchmarking object de-
tection cascades. VJ (Viola & Jones, 2004) and CBCL

are face recognition benchmarks, and DPED (Munder
& Gavrila, 2006) is a pedestrian recognition data set.
We divided the data sets into training and test sets.

We compared MDDAG to three state-of-the-art ob-
ject detection algorithms (the original Viola-Jones
cascade VJCascade (Viola & Jones, 2004), FC-
Boost (Saberian & Vasconcelos, 2010), and Soft-
Cascade (Bourdev & Brandt, 2005)). VJCascade
builds the cascade stage-by-stage by running Ad-
aBoost in each stage. It stops adding base clas-
sifiers to the mth stage when the false positive rate
(FPR) falls below pm

fpr and true positive rate (TPR)
exceeds pm

tpr, where ptpr and pftr are hyperparam-
eters of the algorithm. The total number of stages
is also a hyperparameter. FCBoost also adds base
classifiers iteratively to the cascade, but the base clas-
sifier can be inserted into any of the stages. The goal
is to minimize a global criterion which, similarly to
(8), is composed of a performance-based term and a
complexity-based term. The number of iterations and
the parameter η that determines the trade-off between
the two competing objectives are hyperparameters of
the algorithm. SoftCascade, like MDDAG, builds
a cascade on the output of AdaBoost, where each
stage consists of exactly one base classifier. The final
number of base classifiers is decided beforehand by the
hyperparameter N . In each iteration j, the base clas-
sifier with the highest balanced edge is selected, and
the detection threshold θj is set to achieve a TPR of
1− exp (αj/N − αI {α < 0}), where α is a second hy-
perparameter of the algorithm. Both the TPR and the
number of base classifiers increase with α, so the choice
of α influences the speed/accuracy trade-off (although
not as explicitly as our β or FCBoost’s η).

Comparing test-time-constrained detection algorithms
is quite difficult. The usual trade-off between the
false positive rate (FPR) and the true positive rate
(TPR) can be captured by ROC curves, but here we
also have to take into account the computational effi-
ciency of the detector. In (Bourdev & Brandt, 2005)
this problem is solved by displaying three-dimensional
FPR/TPR/number-of-features surfaces. Here, we de-
cided to show two-dimensional slices of these surfaces:
we fix the FPR to reasonable values and plot the TPR
against the detection time. In each of the algorithms
we used Haar features as base classifiers, so the de-
tection time can be uniformly measured in terms of
the average number of base classifiers needed for de-
tection. In typical detection problems the number of
background (negative) instances is orders of magni-
tudes higher than the number of signal (positive) in-
stances, so we computed this average only over the
negative test set. It turns out that using this measure,

http://cbcl.mit.edu/software-datasets/FaceData2.html

Fast classification using sparse decision DAGs

−2 0 2 4 6
−2

0

2

4

6
(a)

(b)

−2 0 2 4 6
−2

0

2

4

6

4 6 8 10

0 10 20 30
0

200

400

600

800

1000

N
um

be
r

of
 e

va
lu

at
io

ns

Index of weak classifiers

(c)

Figure 1. Experiments with synthetic data. (a) The positive class is composed of the blue and red clusters, and the
negative class is the green cluster. (b) The number of base classifiers used for each individual positive instance versus the
two-dimensional feature coordinates. (c) The number of positive instances from the blue/red clusters on which a given
base classifier was applied according to the policy learned by MDDAG.I. Lower panel: the decision DAG for the positive
class.

vanilla AdaBoost is fairly competitive with tailor-
made cascade detectors, so we also included it in the
comparison.

Computing the TPR versus number-of-features curve
at a fixed FPR cannot be done in a generic algorithm-
independent way. For AdaBoost, in each iteration
j (that is, for each number j of base classifiers) we
tune the detection threshold θ to achieve the given
test FPR, and plot the achieved test TPR versus j. In
the other three algorithms we have 2-3 hyperparam-
eters that explicitly or implicitly influence the aver-
age number of base classifiers and the overall perfor-
mance. We ran the algorithms using different hyper-
parameter combinations. In each run we set the detec-
tion threshold θ to achieve the given test FPR. With
this threshold, each run k determines a TPR/average-
number-of-features pair (pk, Nk) on the training set
and (p′k, N ′

k) on the test set. For each N , we find the
run k∗(N) = arg maxk:Nk≤N pk that achieves the best
training pk using at most N base classifiers, and plot
the test TPR p′k∗(N) versus N . Although overfitting is
not an issue here (the complexity of the classifiers is
relatively low), this setup is important for a fair com-
parison. If overfitting were an issue, the optimization
could also be carried out on a validation set, indepen-
dent of both the test and the training sets. Optimizing
the TPR on the training set and plotting it on the test
set also explains why the curves are non-monotonic.

Figure 2 shows the results we obtained. Although
the differences are quite small, MDDAG outper-
forms the three benchmarks algorithms consistently
in the regime of low number base classifiers, and
it is competitive with them over the full range.
MDDAG.I is slightly better at low complexities,
whereas MDDAG.EXP is more effective at a slightly
higher number of base classifiers. This is not sur-
prising as in the low complexity regime the 0-1 error
is more aggressive and closer to the measured TPR,
whereas when most of the instances are classified cor-
rectly, without the margin information it is impossible
to improve the policy any further.

3.3. Ranking with multi-class DAGs

Although object detection is arguably the best-known
test-time-constrained problem, it is far from being
unique. In web page ranking, the problem is simi-
lar: training time can be almost unlimited, but the
learned ranker must be fast to execute. State-of-the-
art techniques often use thousands of trained models
in an ensemble setup (Chapelle et al., 2011b), so ex-
tracting lean rankers from the full models is an impor-
tant practical issue. One of the difficulties in this case
is that relevance labels may be non-binary, so classi-
cal object-detection cascades cannot be applied. At
the same time, the principles used to design cascades
re-surface also in this domain, although the setup is
rather new and the algorithms require a fair amount

Fast classification using sparse decision DAGs

10
10.5

0.6

0.7

0.8

0.9

1

#base classifiers for negative class

T
P

R

VJ/FPR=0.02

AdaBoost
VJCascade
FCBoost
SoftCascade
MDDAG.I
MDDAG.EXP

10
10.4

0.45

0.5

0.55

0.6

0.65
CBCL/FPR=0.1

#base classifiers for negative class

T
P

R

10
10.5

0.55

0.6

0.65

0.7

0.75

0.8
DPED/FPR=0.1

#base classifiers for negative class

T
P

R

Figure 2. The true positive rate (TPR) vs. the average number of base classifiers evaluated on negative test instances.
The results are computed for different fixed false positive rates (FPR) shown in the title of panels. Lower panel: one of
the DAGs learned for the VJ database.

of manual tuning (Cambazoglu et al., 2010). Despite
this, MDDAG can be used for this task as is.

To evaluate MDDAG on a multi-class classi-
fication/ranking problem, we present results on
the MQ2007 and MQ2008 data sets taken from
LETOR 4.0. In web page ranking, observations come
in the form of query-document pairs, and the perfor-
mance of the ranker is evaluated using tailor-made
loss or gain functions that take as input the order-
ing of all the documents given a query. To train a
ranker, query-document pairs come with manually an-
notated relevance labels that are usually multi-valued
({0, 1, 2} in our case). One common performance mea-
sure is the Normalized Discounted Cumulative Gain
(NDCGm) (Järvelin & Kekäläinen, 2002) which is
based on the first m documents in the order output
by the ranker. We used the averaged NDCG score
ndcg, provided by LETOR 4.0, that takes an average
of the query-wise NDCGm values to evaluate the al-
gorithms. In these experiments the base learners were
decision trees with eight leaves.

The goal of MDDAG is similar to the binary case,
namely to achieve a comparable performance to Ad-
aBoost.MH using fewer base learners. To make the
comparison fair, we employed the same calibration
method to convert the output of the multi-class clas-

sifiers to a scoring function and then to a ranking (Li
et al., 2007). Since the goal this time was not de-
tection, we simply evaluated the average NDCG for
each run k to obtain (ndcgk, Nk) on the training set
and (ndcg′k, N ′

k) on the test set. We then selected
k∗(N) = arg maxk:Nk≤N ndcgk and plotted the test
ndcg′k∗(N) against N . Figure 3 tells us that MDDAG
performs as well as AdaBoost.MH with roughly two-
fold savings in the number of base classifiers.

5 10 15 20
0.45

0.46

0.47

0.48

#evaluated base classifiers

A
ve

ra
ge

 N
D

C
G

MQ2008

AdaBoost.MH

MDDAG.I

MDDAG.EXP

5 10 15 20
0.43

0.44

0.45

0.46

0.47

0.48

0.49

#evaluated base classifiers

A
ve

ra
ge

 N
D

C
G

MQ2007

AdaBoost.MH

MDDAG.I

MDDAG.EXP

Figure 3. The average NDCG vs. the average number of
base classifiers evaluated on test queries.

4. Related works

Besides (Póczos et al., 2009) and (Dulac-Arnold et al.,
2011), MDDAG has several close relatives in the fam-
ily of supervised methods. It is obviously related to
algorithms taken from the vast array of sparse meth-

http://research.microsoft.com/en-us/um/beijing/projects/letor

Fast classification using sparse decision DAGs

ods. The main advantage here is that the MDP setup
allows one to achieve sparsity in a dynamical data-
dependent way. This feature relates the technique to
unsupervised sparse coding (Lee et al., 2007; Ranzato
et al., 2007) rather than to sparse classification or re-
gression. On a more abstract level, MDDAG is also
similar to (Larochelle & Hinton, 2010)’s approach to
“learn where to look”. Their goal is to find a sequence
of two-dimensional features for classifying images in a
data-dependent way, whereas we do a similar search in
a one-dimensional ordered sequence of features.

5. Conclusions

In this paper, we introduced an MDP-based design
of decision DAGs. The output of the algorithm is a
data-dependent sparse classifier, which means that ev-
ery instance “chooses” the base classifiers or features
that it needs to predict its class index. The algo-
rithm is competitive with state-of-the-art cascade de-
tectors on object detection benchmarks, and it is also
directly applicable to test-time-constrained problems
involving multi-class classification, such as web page
ranking. However, in our view, the main benefit of
the algorithm is not necessarily its performance, but
its simplicity and versatility. First, MDDAG is ba-
sically a turn-key procedure: it comes with one user-
provided hyperparameter with a clear semantics of di-
rectly determining the accuracy-speed trade-off. Sec-
ond, MDDAG can be readily applied to problems dif-
ferent from classification by redefining the rewards on
the Quit and Eval actions. For example, one can
easily design regression or cost-sensitive classification
DAGs by using an appropriate reward in (6), or add
a weighting to (7) if the features have different evalu-
ation costs.

Acknowledgments

This work was supported by the ANR-2010-COSI-002
grant of the French National Research Agency.

References

Benbouzid, D., Busa-Fekete, R., Casagrande, N., Collin,
F.-D., and Kégl, B. MultiBoost: a multi-purpose boost-
ing package. JMLR, 13:549–553, 2012.

Bourdev, L. and Brandt, J. Robust object detection via
soft cascade. In CVPR, volume 2, pp. 236–243, 2005.

Cambazoglu et al. Early exit optimizations for additive
machine learned ranking systems. In WSDM, pp. 411–
420, 2010.

Chapelle, O., Chang, Y., and Liu, T.Y. Future directions
in learning to rank. In JMLR W&CP, volume 14, pp.
91–100, 2011a.

Chapelle, O., Chang, Y., and Liu, T.Y. (eds.). Ya-

hoo! Learning-to-Rank Challenge, volume 14 of JMLR
W&CP, 2011b.

Chapelle, Olivier and Chang, Yi. Yahoo! Learning-to-
Rank Challenge overview. In JMLR W&CP, volume 14,
pp. 1–24, 2011.

Davis, G., Mallat, S., and Avellaneda, M. Adaptive greedy
approximations. Constructive Approximation, 13(1):57–
98, 1997.

Dulac-Arnold, G., Denoyer, L., Preux, P., and Gallinari,
P. Datum-wise classification: A sequential approach to
sparsity. In ECML, 2011.

Ejov, V., Filar, J., and Gondzio, J. An interior point
heuristic for the Hamiltonian cycle problem via Markov
Decision Processes. JGO, 29(3):315–334, 2004.

Freund, Y. and Schapire, R. E. A decision-theoretic gener-
alization of on-line learning and an application to boost-
ing. JCSS, 55:119–139, 1997.

Gligorov, V. A single track HLT1 trigger. Technical Report
LHCb-PUB-2011-003, CERN, 2011.

Järvelin, K. and Kekäläinen, J. Cumulated gain-based
evaluation of IR techniques. ACM TIS, 20:422–446,
2002.

Larochelle, H. and Hinton, G. Learning to combine foveal
glimpses with a third-order Boltzmann machine. In
NIPS, pp. 1243–1251, 2010.

Lee, H., Battle, A., Raina, R., and Ng, A. Y. Efficient
sparse coding algorithms. In NIPS, pp. 801–808, 2007.

Li, P., Burges, C., and Wu, Q. McRank: Learning to rank
using multiple classification and gradient boosting. In
NIPS, pp. 897–904, 2007.

Munder, S. and Gavrila, D. M. An experimental study
on pedestrian classification. IEEE PAMI, 28:1863–1868,
2006.

Póczos, B., Abbasi-Yadkori, Y., Szepesvári, Cs., Greiner,
R., and Sturtevant, N. Learning when to stop thinking
and do something! In ICML, pp. 825–832, 2009.

Ranzato, M., Poultney, C., Chopra, S., and LeCun, Y. Ef-
ficient learning of sparse representations with an energy-
based model. In NIPS, pp. 1137–1144, 2007.

Rummery, G. A. and Niranjan, M. On-line Q-learning us-
ing connectionist systems. Technical Report CUED/F-
INFENG/TR 166, Cambridge University, 1994.

Saberian, M. and Vasconcelos, N. Boosting classifier cas-
cades. In NIPS, pp. 2047–2055, 2010.

Schapire, R.E. and Singer, Y. Improved boosting al-
gorithms using confidence-rated predictions. Machine
Learning, 37(3):297–336, 1999.

Sutton, R.S. and Barto, A.G. Reinforcement learning: an
introduction. Adaptive computation and machine learn-
ing. MIT Press, 1998.

Szepesvári, Cs. Algorithms for Reinforcement Learning.
Morgan and Claypool, 2010.

Viola, P. and Jones, M. Robust real-time face detection.
IJCV, 57:137–154, 2004.

