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Abstract

We introduce a new regression frame-
work, Gaussian process regression networks
(GPRN), which combines the structural
properties of Bayesian neural networks with
the nonparametric flexibility of Gaussian pro-
cesses. GPRN accommodates input (pre-
dictor) dependent signal and noise corre-
lations between multiple output (response)
variables, input dependent length-scales and
amplitudes, and heavy-tailed predictive dis-
tributions. We derive both elliptical slice
sampling and variational Bayes inference pro-
cedures for GPRN. We apply GPRN as a
multiple output regression and multivariate
volatility model, demonstrating substantially
improved performance over eight popular
multiple output (multi-task) Gaussian pro-
cess models and three multivariate volatility
models on real datasets, including a 1000 di-
mensional gene expression dataset.

1. Introduction

“Learning representations by back-propagating errors”
by Rumelhart et al. (1986) is a defining paper in ma-
chine learning history. This paper made neural net-
works popular for their ability to capture correlations
between multiple outputs, and to discover hidden fea-
tures in data, by using adaptive hidden basis functions
that were shared across the outputs.

MacKay (1992) and Neal (1996) later showed that no
matter how large or complex the neural network, one
could avoid overfitting using a Bayesian formulation.
Neal (1996) also argued that “limiting complexity is
likely to conflict with our prior beliefs, and can there-
fore only be justified to the extent that it is neces-
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sary for computational reasons”. Accordingly, Neal
(1996) pursued the limit of large models, and found
that Bayesian neural networks became Gaussian pro-
cesses as the number of hidden units approached infin-
ity, and conjectured that “there may be simpler ways
to do inference in this case”.

These simple inference techniques became the corner-
stone of subsequent Gaussian process models (Ras-
mussen & Williams, 2006). These models assume a
prior directly over functions, rather than parameters.
By further assuming homoscedastic Gaussian noise,
one can analytically infer a posterior distribution over
these functions, given data. The properties of these
functions – smoothness, periodicity, etc. – can easily
be controlled by a Gaussian process covariance kernel.
Gaussian process models have recently become pop-
ular for non-linear regression and classification (Ras-
mussen & Williams, 2006), and have impressive em-
pirical performances (Rasmussen, 1996).

However, a neural network allowed for correlations be-
tween multiple outputs, through sharing adaptive hid-
den basis functions across the outputs. In the infinite
limit of basis functions, these correlations vanished.
Moreover, neural networks were envisaged as intelli-
gent agents which discovered hidden features and rep-
resentations in data, while Gaussian processes, though
effective at regression and classification, are simply
smoothing devices (MacKay, 1998).

Recently there has been an explosion of interest in ex-
tending the Gaussian process regression framework to
account for fixed correlations between output variables
(Alvarez & Lawrence, 2011; Yu et al., 2009; Bonilla
et al., 2008; Teh et al., 2005; Boyle & Frean, 2004).
These are often called ‘multi-task’ learning or ‘multi-
ple output’ regression models. Capturing correlations
between outputs (responses) can be used to make bet-
ter predictions. Imagine we wish to predict cadmium
concentrations in a region of the Swiss Jura, where ge-
ologists are interested in heavy metal concentrations.
A standard Gaussian process regression model would
only be able to use cadmium training measurements.
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With a multi-task method, we can also make use of
correlated heavy metal measurements to enhance cad-
mium predictions (Goovaerts, 1997). We could further
enhance predictions if we could use how these (signal)
correlations change with geographical location.

There has similarly been great interest in extending
Gaussian process (GP) regression to account for in-
put dependent noise variances (Goldberg et al., 1998;
Kersting et al., 2007; Adams & Stegle, 2008; Turner,
2010; Wilson & Ghahramani, 2010b;a; Lázaro-Gredilla
& Titsias, 2011). Wilson & Ghahramani (2010a; 2011)
and Fox & Dunson (2011) further extended the GP
framework to accommodate input dependent noise cor-
relations between multiple output (response) variables.

In this paper, we introduce a new regression frame-
work, Gaussian Process Regression Networks (GPRN),
which combines the structural properties of Bayesian
neural networks with the nonparametric flexibility of
Gaussian processes. This network is an adaptive mix-
ture of Gaussian processes, which naturally accommo-
dates input dependent signal and noise correlations
between multiple output variables, input dependent
length-scales and amplitudes, and heavy tailed predic-
tive distributions, without expensive or numerically
unstable computations. The GPRN framework ex-
tends and unifies the work of Journel & Huijbregts
(1978), Neal (1996), Gelfand et al. (2004), Teh et al.
(2005), Adams & Stegle (2008), Turner (2010), and
Wilson & Ghahramani (2010b; 2011).

Throughout this text we assume we are given a dataset
of input output pairs, D = {(xi,y(xi)) : i = 1, . . . , N},
where x ∈ X is an input (predictor) variable belonging
to an arbitrary set X , and y(x) is the corresponding
p dimensional output; each element of y(x) is a one
dimensional output (response) variable, for example
the concentration of a single heavy metal at a geo-
graphical location x. We aim to predict y(x∗)|x∗,D
and Σ(x∗) = cov[y(x∗)|x∗,D] at a test input x∗, while
accounting for input dependent signal and noise cor-
relations between the elements of y(x).

We start by introducing the GPRN framework and
discussing inference. We then further discuss related
work, before comparing to eight multiple output GP
models, on gene expression and geostatistics datasets,
and three multivariate volatility models on several
benchmark financial datasets. In the supplementary
material (Wilson & Ghahramani, 2012) we further dis-
cuss theoretical aspects of GPRN, and review GP re-
gression and notation (Rasmussen & Williams, 2006).

2. Gaussian Process Networks

We wish to model a p dimensional function y(x), with
signal and noise correlations that vary with x.

We model y(x) as

y(x) = W (x)[f(x) + σfε] + σyz , (1)

where ε = ε(x) and z = z(x) are respectively N (0, Iq)
and N (0, Ip) white noise processes. Iq and Ip are q×q
and p×p dimensional identity matrices. W (x) is a p×q
matrix of independent Gaussian processes such that
W (x)ij ∼ GP(0, kw), and f(x) = (f1(x), . . . , fq(x))>

is a q × 1 vector of independent GPs with fi(x) ∼
GP(0, kfi). The GPRN prior on y(x) is induced
through GP priors in W (x) and f(x), and the noise
model is induced through ε and z.

We represent the Gaussian process regression network
(GPRN)1 of equation (1) in Figure 1. Each of the la-
tent Gaussian processes in f(x) has additive Gaussian
noise. Changing variables to include the noise σfε, we

let f̂i(x) = fi(x) + σf ε ∼ GP(0, kf̂i), where

kf̂i(xa, xw) = kfi(xa, xw) + σ2
fδaw , (2)

and δaw is the Kronecker delta. The latent node func-
tions f̂(x) are connected together to form the outputs
y(x). The strengths of the connections change as a
function of x; the weights themselves – the entries of
W (x) – are functions. Old connections can break and
new connections can form. This is an adaptive net-
work, where the signal and noise correlations between
the components of y(x) vary with x. We label the
length-scale hyperparameters for the kernels kw and
kfi as θw and θf respectively. We often assume that all
the weight GPs share the same covariance kernel kw,
including hyperparameters. Roughly speaking, shar-
ing length-scale hyperparameters amongst the weights
means that, a priori, the strengths of the connections
in Figure 1 vary with x at the same rate.

To explicitly separate the adaptive signal and noise
correlations, we re-write (1) as

y(x) = W (x)f(x)︸ ︷︷ ︸
signal

+σfW (x)ε+ σyz︸ ︷︷ ︸
noise

. (3)

Given W (x), each of the outputs yi(x), i = 1, . . . , p, is
a Gaussian process with kernel

kyi
(xa, xw) =

q∑
j=1

Wij(xa)kf̂j (xa, xw)Wij(xw)+δawσ
2
y .

(4)

1Coincidentally, there is an unrelated paper called
“Gaussian process networks” (Friedman & Nachman,
2000), which is about learning the structure of Bayesian
networks – e.g. the direction of dependence between ran-
dom variables.
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Figure 1. The Gaussian process regression network. Latent
random variables and observables are respectively labelled
with circles and squares, except for the weight functions in
a). Hyperparameters are labelled with dots. a) This neu-
ral network style diagram shows the q components of the
vector f̂ (GPs with additive noise), and the p components
of the vector y. The links in the graph, four of which
are labelled, are latent random weight functions. Every
quantity in this graph depends on the input x. This graph
emphasises the adaptive nature of this network: links can
change strength or even disappear as x changes. b) A di-
rected graphical model showing the generative procedure
with relevant variables.

The components of y(x) are coupled through the ma-
trix W (x). Training the network involves conditioning
W (x) on the data D, and so the predictive covariances
of y(x∗)|D are now influenced by the values of the
observations, and not just distances between the test
point x∗ and the observed points x1, . . . , xN as is the
case for independent GPs.

We can view (4) as an adaptive kernel learned from
the data. There are several other interesting features
in equation (4): 1) the amplitude of the covariance
function,

∑q
j=1Wij(x)Wij(x

′), is non-stationary (in-

put dependent); 2) even if each of the kernels kfj has
different stationary length-scales, the mixture of the
kernels kfj is input dependent and so the effective
overall length-scale is non-stationary; 3) the kernels
kfj may be entirely different: some may be periodic,
others squared exponential, others Brownian motion,
and so on. Therefore the overall covariance kernel may
be continuously switching between regions of entirely
different covariance structures.

In addition to modelling signal correlations, we can
see from equation (3) that the GPRN is also a mul-
tivariate volatility model. The noise covariance is
σ2
fW (x)W (x)> + σ2

yIp. Since the entries of W (x) are
GPs, this noise model is an example of a generalised
Wishart process (Wilson & Ghahramani, 2010a; 2011).

The number of nodes q influences how the model ac-
counts for signal and noise correlations. If q is smaller

than p, the dimension of y(x), the model performs
dimensionality reduction and matrix factorization as
part of the regression on y(x) and cov[y(x)]. How-
ever, we may want q > p, for instance if the output
space were one dimensional (p = 1). In this case we
would need q > 1 for nonstationary length-scales and
covariance structures. For a given dataset, we can vary
q and select the value which gives the highest marginal
likelihood on training data.

3. Inference

We have specified a prior p(y(x)) at all points x in the
domain X , and a noise model, so we can infer the pos-
terior p(y(x)|D). The prior on y(x) is induced through
the GP priors in W (x) and f(x), and the parameters
γ = {θf ,θw, σf , σy}. We perform inference directly
over the GPs and parameters.

We explicitly re-write the prior over GPs in terms of
u = (f̂ ,W), a vector composed of all the node and
weight Gaussian process functions, evaluated at the
training points {x1, . . . , xN}. There are q node func-
tions and p× q weight functions. Therefore

p(u|σf ,θf ,θw) = N (0, CB) , (5)

where CB is an Nq(p+ 1)×Nq(p+ 1) block diagonal
matrix, since the weight and node functions are a priori
independent. We order the entries of u so that the
first q blocks are N ×N covariance matrices Kf̂i

from
the node kernels kf̂i , and the last blocks are N × N
covariance matrices Kw from the weight kernel kw.

From (1), the likelihood is

p(D|u, σy) =

N∏
i=1

N (y(xi);W (xi)f̂(xi), σ
2
yIp) . (6)

Applying Bayes’ theorem,

p(u|D,γ) ∝ p(D|u, σy)p(u|σf ,θf ,θw) . (7)

We sample from the posterior in (7) using elliptical
slice sampling (ESS) (Murray et al., 2010), which is
specifically designed to sample from posteriors with
strongly correlated Gaussian priors. For comparison
we approximate (7) using a message passing imple-
mentation of variational Bayes (VB). We also use VB
to learn the hyperparameters γ|D. Details about our
ESS and VB approaches are in Sections 1 and 2 of the
supplementary material.

By incorporating noise on f , the GP network accounts
for input dependent noise correlations (as in (3)), with-
out the need for costly or numerically unstable ma-
trix decompositions during inference. The matrix σ2

yIp
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does not change with x and requires only one O(1)
operation to invert. In a more typical multivariate
volatility model, one must decompose a p × p matrix
Σ(x) once for each datapoint xi (N times in total),
an O(Np3) operation which is prone to numerical in-
stability. In general, multivariate volatility models are
intractable for p > 5 (Gouriéroux et al., 2009; Engle,
2002). Moreover, multi-task Gaussian process mod-
els typically have an O(N3p3) complexity (Alvarez &
Lawrence, 2011). In Section 3 of the supplementary
material (Wilson & Ghahramani, 2012) we show that,
fixing the number of ESS or VB iterations, GPRN in-
ference scales linearly with p, and further discuss the-
oretical properties of GPRN, like the heavy-tailed pre-
dictive distribution.

4. Related Work

Gaussian process regression networks are related to
a large body of seemingly disparate work in ma-
chine learning, econometrics, geostatistics, physics,
and probability theory.

In machine learning, the semiparametric latent fac-
tor model (SLFM) (Teh et al., 2005) was introduced
to model multiple outputs with fixed signal correla-
tions. SLFM specifies a linear mixing of latent Gaus-
sian processes. The SLFM is similar to the linear
model of coregionalisation (LMC) (Journel & Hui-
jbregts, 1978) and intrinsic coregionalisation model
(ICM) (Goovaerts, 1997) in geostatistics, but the
SLFM incorporates important Gaussian process hy-
perparameters like length-scales, and methodology for
learning these hyperparameters. In machine learning,
the SLFM has also been developed as “Gaussian pro-
cess factor analysis” (Yu et al., 2009), with an empha-
sis on time being the input (predictor) variable.

For changing correlations, the Wishart process (Bru,
1991) was first introduced in probability theory as a
distribution over a collection of positive definite covari-
ance matrices with Wishart marginals. It was defined
as an outer product of autoregressive Gaussian pro-
cesses restricted to a Brownian motion or Ornstein-
Uhlenbeck covariance structure. In the geostatistics
literature, Gelfand et al. (2004) applied a Wishart pro-
cess as part of a linear coregionalisation model with
spatially varying signal covariances, on a p = 2 di-
mensional real-estate example. Later Gouriéroux et al.
(2009) returned to the Wishart process of Bru (1991)
to model multivariate volatility, letting the noise co-
variance be specified as an outer product of AR(1)
Gaussian processes, assuming that the covariance ma-
trices Σ(t) = cov(y|t) are observables on an evenly
spaced one dimensional grid. In machine learning,
Wilson & Ghahramani (2010a; 2011) introduced the

generalised Wishart process (GWP), which generalises
the Wishart process of (Bru, 1991) to a process over
arbitrary positive definite matrices (Wishart marginals
are not required) with a flexible covariance structure,
and using the GWP, extended the GP framework to
account for input dependent noise correlations (mul-
tivariate volatility), without assuming the noise is ob-
servable, or that the input space is 1D, or on a grid.

Gaussian process regression networks act as both a
multi-task and multivariate volatility model. The sig-
nal correlation model in GPRN differs from Gelfand
et al. (2004) in that 1) the GPRN incorporates
and estimates Gaussian process hyperparameters, like
length-scales, effectively learning aspects of the covari-
ance structure from data, 2) is tractable for p > 3, 3)
is used as a latent factor model (where q < p), 4)
can account for input dependent length-scales and co-
variance structures, and 5) incorporates an input de-
pendent noise correlation model. Moreover, the VB
and ESS inference procedures we present here are sig-
nificantly more efficient than the Metropolis-Hastings
proposals in Gelfand et al. (2004). Generally a noise
model strongly influences a regression on the signal,
even if the noise and signal models are a priori inde-
pendent. In the GPRN prior of equation (3) the noise
and signal correlations are explicitly related: through
sharing W (x), the signal and noise are encouraged
to increase and decrease together. The noise model
is an example of a GWP, although GPRN scales lin-
early and not cubically with p, per iteration of ESS or
VB. If the GPRN is exposed solely to input dependent
noise, the length-scales on the node functions f(x) will
train to large values, turning the GPRN into solely a
multivariate volatility model: all the modelling then
takes place in W (x). In other words, through learn-
ing Gaussian process hyperparameters, GPRN can au-
tomatically vary between a multi-task and multivari-
ate volatility model. The hyperparameters in GPRN
are also important for distinguishing between the be-
haviour of the weight and node functions. We may
expect, for example, that the node functions will vary
more quickly than the weight functions, so that the
components of y(x) vary more quickly than the corre-
lations between the components of y(x). The rate at
which the node and weight functions vary is controlled
by the Gaussian process length-scale hyperparameters,
which are learned from data.

When q = p = 1, the GPRN resembles the nonstation-
ary GP regression model of Adams & Stegle (2008).
Likewise, when the weight functions are constants,
the GPRN becomes the semiparametric latent factor
model (SLFM) of Teh et al. (2005), except that the
resulting GP regression network is less prone to over-
fitting through its use of full Bayesian inference. The
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GPRN also somewhat resembles the natural sound
model (MPAD) in Section 5.3 of Turner (2010), ex-
cept in MPAD the analogue of the node functions are
AR(2) Gaussian processes, and the “weight functions”
are a priori correlated.

Ver Hoef & Barry (1998) in geostatistics and Boyle
& Frean (2004) in machine learning proposed an al-
ternative convolution GP model for multiple outputs
(CMOGP) with fixed signal correlations, where each
output at each x ∈ X is a mixture of latent Gaussian
processes mixed across the whole input domain X .

5. Experiments

We compare GPRN to multi-task learning and multi-
variate volatility models. We also compare between
variational Bayes (VB) and elliptical slice sampling
(ESS) inference within the GPRN framework. In the
multi-task setting, there are p dimensional observa-
tions y(x), and the goal is to use the correlations be-
tween the elements of y(x) to make better predictions
of y(x∗), for a test input x∗, than if we were to treat
the dimensions independently. A major difference be-
tween GPRN and alternative multi-task models is that
the GPRN accounts for signal correlations that change
with x, and input dependent noise correlations, rather
than fixed correlations. We compare to multi-task GP
models on gene expression and geostatistics datasets.

In the multi-task experiments, the GPRN accounts for
both input dependent signal and noise covariance ma-
trices. To specifically test GPRN’s ability to model in-
put dependent noise covariances (multivariate volatil-
ity), we compare predictions of cov[y(x)] = Σ(x) to
those made by popular multivariate volatility models
on benchmark financial datasets.

In all experiments, GPRN uses squared exponential
covariance functions, with a length-scale shared across
all node functions, and another length-scale shared
across all weight functions. GPRN is robust to initial-
isation. We use an adversarial initialisation of N (0, 1)
white noise for Gaussian process functions.

5.1. Gene Expression

Tomancak et al. (2002) measured gene expression lev-
els every hour for 12 hours during Drosophila embryo-
genesis; they then repeated this experiment for an in-
dependent replica (a second independent time series).
Gene expression is activated and deactivated by tran-
scription factor proteins. We focus on genes which are
thought to at least be regulated by the transcription
factor twi, which influences mesoderm and muscle de-
velopment in Drosophila (Zinzen et al., 2009). The
assumption is that these gene expression levels are all

correlated. We would like to use how these correlations
change over time to make better predictions of time
varying gene expression in the presence of transcrip-
tion factors. In total there are 1621 genes (outputs) at
N = 12 time points (inputs), on two independent repli-
cas. For training, p = 50 random genes were selected
from the first replica, and the corresponding 50 genes
in the second replica were used for testing. We then
repeated this experiment 10 times with a different set
of genes each time, and averaged the results. We then
repeated the whole experiment, but with p = 1000
genes. We used exactly the same training and testing
sets as Alvarez & Lawrence (2011).

We use a smaller p = 50 dataset so that we are able
to compare with popular alternative multi-task meth-
ods (LMC, CMOGP, SLFM), which have a complex-
ity of O(N3p3) and would not scale to p = 1000 (Al-
varez & Lawrence, 2011).2 For p = 1000, we compare
to the sparse convolved multiple output GP methods
(CMOFITC, CMODTC, and CMOPITC) of Alvarez
& Lawrence (2011). In both of these regressions, the
GPRN is accounting for multivariate volatility; this is
the first time a multivariate stochastic volatility model
has been estimated for p > 50 (Chib et al., 2006). We
assess performance using standardised mean square er-
ror (SMSE) and mean standardized log loss (MSLL),
as defined in Rasmussen & Williams (2006) on page
23. Using the empirical mean and variance to fit the
data would give an SMSE and MSLL of 1 and 0 re-
spectively. The smaller the SMSE and more negative
the MSLL the better.

The results are in Table 1, under the headings GENE

(50D) and GENE (1000D). For SET 2 we reverse train-
ing and testing replicas in SET 1. GPRN outperforms
all of the other models, with between 46% and 68% of
the SMSE, and similarly strong results on the MSLL
error metric.3 On both the 50 and 1000 dimensional
datasets, the marginal likelihood for the network struc-
ture is sharply peaked at q = 1, as we might expect
since there is likely one transcription factor twi con-
trolling the expression levels of the genes in question.

Typical GPRN (VB) runtimes for the 50D and 1000D
datasets were respectively 12 seconds and 330 seconds.
These runtimes scale roughly linearly with dimension
(p), which is what we expect. GPRN (VB) runs at
about the same speed as the sparse CMOGP meth-

2 We also implemented the SVLMC of Gelfand et al.
(2004) but found it intractable on the gene expression and
geostatistics datasets, and on a subset of data it gave worse
results than the other methods we compare to. SVLMC is
not applicable to the multivariate volatility datasets. The
supplementary material has more details.

3 Independent GPs severely overfit on GENE, giving an
MSLL of ∞.
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ods, and much faster than CMOGP, LMC and SLFM,
which take days to run on the 1000D dataset. The
GPRN (ESS) runtimes for the 50D and 1000D datasets
were 40 seconds and 9000 seconds (2.5 hr), and re-
quired respectively 6000 and 104 samples to reach con-
vergence, as assessed by trace plots of sample likeli-
hoods. In terms of both speed and accuracy GPRN
(ESS) outperforms all methods except GPRN (VB).
GPRN (ESS) does not mix as well in high dimen-
sions, and the number of ESS iterations required to
reach convergence noticeably grows with p. However,
ESS is still tractable and performing relatively well in
p = 1000 dimensions, in terms of speed and predictive
accuracy. Runtimes are on a 2.3 GHz Intel i5 Duo
Core processor.

5.2. Jura Geostatistics

Here we are interested in predicting concentrations of
cadmium at 100 locations within a 14.5 km2 region
of the Swiss Jura. For training, we have access to
measurements of cadmium at 259 neighbouring loca-
tions. We also have access to nickel and zinc concen-
trations at these 259 locations, as well as at the 100
locations we wish to predict cadmium. While a stan-
dard Gaussian process regression model would only
be able to make use of the cadmium training mea-
surements, a multi-task method can use the correlated
nickel and zinc measurements to enhance predictions.
With GPRN we can also make use of how the correla-
tions between nickel, zinc, and cadmium change with
location to further enhance predictions.

The network structure with the highest marginal like-
lihood has q = 2 latent node functions. The node and
weight functions learnt using VB for this setting are
shown in Figure 1 of the supplementary material (Wil-
son & Ghahramani, 2012). Since there are p = 3 out-
put dimensions, the result q < p suggests that heavy
metal concentrations in the Swiss Jura are correlated.
Indeed, using our model we can observe the spatially
varying correlations between heavy metal concentra-
tions, as shown for cadmium and zinc in Figure 2.
Although the correlation between cadmium and zinc
is generally positive (with values around 0.6), there
is a region where the correlations noticeably decrease,
perhaps corresponding to a geological structure. The
quantitative results in Table 1 suggest that the ability
of GPRN to learn these spatially varying correlations
is beneficial for predicting cadmium concentrations.

We assess performance quantitatively using mean ab-
solute error (MAE) between the predicted and true
cadmium concentrations. We restart the experiment
10 times with different initialisations of the parame-
ters, and average the MAE. The results are marked
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Figure 2. Spatially dependent correlation between cad-
mium and zinc learnt by the GPRN. Markers show the
locations where measurements were made.

by JURA in Table 1. The experimental setup follows
Goovaerts (1997) and Alvarez & Lawrence (2011). We
found log transforming and normalising each dimen-
sion to have zero mean and unit variance to be ben-
eficial due to the skewed distribution of the y-values
(but we also include results on untransformed data,
marked with *). All the multiple output methods give
lower MAE than using an independent GP, and GPRN
outperforms SLFM and the other methods.

For the JURA dataset, the improved performance of
GPRN is at the cost of a slightly greater runtime.
However, GPRN is accounting for input dependent sig-
nal and noise correlations, unlike the other methods.
Moreover, the complexity of GPRN scales linearly with
p (per iteration), unlike the other methods which scale
asO(N3p3). This is why GPRN runs relatively quickly
on the 1000 dimensional gene expression dataset, for
which the other methods are intractable. These data
are available from http://www.ai-geostats.org/.

5.3. Multivariate Volatility

In the previous experiments the GPRN implicitly ac-
counted for multivariate volatility (input dependent
noise covariances) in making predictions of y(x∗). We
now test the GPRN explicitly as a model of mul-
tivariate volatility, and assess predictions of Σ(t) =
cov[y(t)]. We make 200 historical predictions of Σ(t)
at observed time points, and 200 one day ahead fore-
casts. Historical predictions can be used, for example,
to understand a past financial crisis. The forecasts
are assessed using the log likelihood of new observa-
tions under the predicted covariance, denoted L Fore-

http://www.ai-geostats.org/
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cast. We follow Wilson & Ghahramani (2010a), and
predict Σ(t) for returns on three currency exchanges
(EXCHANGE) and five equity indices (EQUITY) processed
as in Wilson & Ghahramani (2010a). These datasets
are especially suited to MGARCH, the most popu-
lar multivariate volatility model, and have become
a benchmark for assessing GARCH models (Poon &
Granger, 2005; Hansen & Lunde, 2005; Brownlees
et al., 2009; McCullough & Renfro, 1998; Brooks et al.,
2001). We compare to full BEKK MGARCH (Engle &
Kroner, 1995), the generalised Wishart process (Wil-
son & Ghahramani, 2010a), and the original Wishart
process (Bru, 1991; Gouriéroux et al., 2009).

We see in Table 1 that GPRN (ESS) is often out-
performed by GPRN (VB) on multivariate volatility
sets, suggesting convergence difficulties with ESS. The
high historical MSE for GPRN on EXCHANGE is essen-
tially training error, and less meaningful than the en-
couraging step ahead forecast likelihoods; to harmo-
nize with the econometrics literature, historical MSE
for EXCHANGE is between the learnt covariance Σ(x)
and observed y(x)y(x)>. See Wilson & Ghahramani
(2010a) for details. Overall, the GPRN shows promise
as both a multi-task and multivariate volatility model,
especially since the multivariate volatility datasets are
suited to MGARCH. These data were obtained using
Datastream (http://www.datastream.com/).

6. Discussion

A Gaussian process regression network (GPRN) has
a simple and interpretable structure, and generalises
many of the recent extensions to the Gaussian pro-
cess regression framework. The model naturally ac-
commodates input dependent signal and noise corre-
lations between multiple output variables, heavy tailed
predictive distributions, input dependent length-scales
and amplitudes, and adaptive covariance functions.
Furthermore, GPRN has scalable inference proce-
dures, and strong empirical performance on several
real datasets.

In the future, it would be enlightening to use GPRN
with different types of adaptive covariance structures,
particularly in the case where p = 1 and q > 1; in
one dimensional output space it would be easy, for in-
stance, to visualise a process gradually switching be-
tween brownian motion, periodic, and smooth covari-
ance functions. It would also be interesting to ap-
ply this adaptive network to classification, or to use a
GPRN where the weight functions depend on a differ-
ent set of variables than the node functions. We hope
the GPRN will inspire further research into adaptive
networks, and further connections between different
areas of machine learning and statistics.

Table 1. Comparative performance on all datasets.

GENE (50D) Average SMSE Average MSLL

SET 1:
GPRN (VB) 0.3356± 0.0294 −0.5945± 0.0536
GPRN (ESS) 0.3236± 0.0311 −0.5523± 0.0478
LMC 0.6069± 0.0294 −0.2687± 0.0594
CMOGP 0.4859± 0.0387 −0.3617± 0.0511
SLFM 0.6435± 0.0657 −0.2376± 0.0456

SET 2:
GPRN (VB) 0.3403± 0.0339 −0.6142± 0.0557
GPRN (ESS) 0.3266± 0.0321 −0.5683± 0.0542
LMC 0.6194± 0.0447 −0.2360± 0.0696
CMOGP 0.4615± 0.0626 −0.3811± 0.0748
SLFM 0.6264± 0.0610 −0.2528± 0.0453

GENE (1000D) Average SMSE Average MSLL

SET 1:
GPRN (VB) 0.3473± 0.0062 −0.6209± 0.0085
GPRN (ESS) 0.4520± 0.0079 −0.4712± 0.0327
CMOFITC 0.5469± 0.0125 −0.3124± 0.0200
CMOPITC 0.5537± 0.0136 −0.3162± 0.0206
CMODTC 0.5421± 0.0085 −0.2493± 0.0183

SET 2:
GPRN (VB) 0.3287± 0.0050 −0.6430± 0.0071
GPRN (ESS) 0.4140± 0.0078 −0.4787± 0.0315
CMOFITC 0.5565± 0.0425 −0.3024± 0.0294
CMOPITC 0.5713± 0.0794 −0.3128± 0.0138
CMODTC 0.5454± 0.0173 0.6499± 0.7961

JURA Average MAE Training (secs)

GPRN (VB) 0.4040± 0.0006 1040
GPRN* (VB) 0.4525± 0.0036 1190
SLFM (VB) 0.4247± 0.0004 614
SLFM* (VB) 0.4679± 0.0030 810
SLFM 0.4578± 0.0025 792
Co-kriging 0.51
ICM 0.4608± 0.0025 507
CMOGP 0.4552± 0.0013 784
GP 0.5739± 0.0003 74

EXCHANGE Historical MSE L Forecast

GPRN (VB) 3.83× 10−8 2073
GPRN (ESS) 6.120× 10−9 2012
GWP 3.88× 10−9 2020
WP 3.88× 10−9 1950
MGARCH 3.96× 10−9 2050

EQUITY Historical MSE L Forecast

GPRN (VB) 0.978× 10−9 2740
GPRN (ESS) 0.827× 10−9 2630
GWP 2.80× 10−9 2930
WP 3.96× 10−9 1710
MGARCH 6.69× 10−9 2760

http://www.datastream.com/
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