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Abstract

This paper revisits the problem of an-
alyzing multiple ratings given by differ-
ent judges. Different from previous work
that focuses on distilling the true labels
from noisy crowdsourcing ratings, we em-
phasize gaining diagnostic insights into our
in-house well-trained judges. We gener-
alize the well-known DawidSkene model
(Dawid & Skene, 1979) to a spectrum of
probabilistic models under the same “Tru-
eLabel + Confusion” paradigm, and show
that our proposed hierarchical Bayesian
model, called HybridConfusion, consis-
tently outperforms DawidSkene on both
synthetic and real-world data sets.

1. Motivation

Recent advent of online crowdsourcing services (e.g.,
Amazon’s Mechanical Turk) excites the machine learn-
ing community by making large amount of labeled
data practical. Because of the low cost, crowdsourc-
ing labels are usually given by anonymous lowly-paid
non-experts, which sparks recent interest in recover-
ing the true labels from noisy (or even malicious)
labels (Whitehill et al., 2009; Welinder et al., 2010;
Welinder & Perona, 2010; Raykar et al., 2009). In this
paper, we study the same problem of analyzing multi-
ple ratings, but in quite a different setting.

We are in a major Web search engine company, and
train search rankers using human ratings on the rele-
vance of tens of millions of (query, URL) pairs. As it
is too risky to bet the search engine on crowdsourc-
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ing ratings, we have to carefully recruit human judges,
rigorously train them, and continually monitor their
quality during the work. Since these judges are well-
trained and the rating task is considerably hard, the
cost of each label becomes so expensive that even two
ratings per (query, URL) pair are economically infea-
sible: note that we have millions of pairs to rate and
the number keeps increasing. Instead, we hope that a
human judge would function satisfactorily once quali-
fied, and each (query, URL) pair is only rated by one
judge.

A key component in controlling the judge quality is
to blend a small set of “monitoring” (query, URL)
pairs into judges’ regular work without their knowl-
edge. This set of (query, URL) pairs are rated by all
judges under monitoring. By analyzing the multiple
ratings on (query, URL) pairs in this monitoring set,
we hope to correctly score the quality of each judge,
and more importantly, to gain insights into what con-
fusions each judge makes so that we could plan tar-
geted tutoring and revisions to the rating guidelines.
Therefore, different from previous work that focuses
on recovering the true labels from low-cost noisy la-
bels, we are more interested in diagnostic information
about judge confusions. For this reason, this paper
emphasizes on probabilistic models that use a confu-
sion matrix to quantify the competency of each judge.

The DawidSkene model (Dawid & Skene, 1979) is
a good candidate for this purpose. It pioneers the
“TrueLabel + Confusion” paradigm: each item has
a true label, and the rating each judge assigns to
it is the true label obfuscated through the judge’s
confusion matrix. Suppose the rating is on a K-
level scale, a confusion matrix is a K × K matrix

† This work was done when the first author was employed
by Microsoft Research at Redmond.
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(a) DawidSkene (b) SingleConfusion (c) HybridConfusion

Figure 1. Graphical Model Representation of the Spectrum of Probabilistic Models

with the (k, t) element being the probability that the
judge would rate the item t when the true label is
k. Because each confusion matrix entails K ∗ (K −
1) free parameters, DawidSkene possesses at least
J ∗ K ∗ (K − 1) free parameters when J judges are
involved. While this large number of free parame-
ters renders big model capacity, it could also lead to
overfitting easily, as will be seen in the experiments.
For this reason, we propose a simplified model, called
SingleConfusion, which forces all judges to share
the same confusion matrix. It significantly reduces the
number of free dimensions, but unfortunately proves
too rigid for real-world data, i.e., underfitting. As a
tradeoff between the two, we further propose a hier-
archical Bayesian model, called HybridConfusion,
which allows each judge to have her own confusion
matrix, but at the same time regularizes these ma-
trices through Bayesian shrinkage. Effectively, the
three models form a spectrum of probabilistic mod-
els under the “TrueLabel + Confusion” paradigm. In
summary, we make the following two contributions in
this paper: (1) we study the problem of analyzing
multiple ratings with an emphasis on the diagnostic
aspect of different models, which complements pre-
vious work on recovering true labels from noisy rat-
ings, (2) we generalize the well-known DawidSkene

model to a spectrum of probabilistic models under
the same paradigm, and show the newly proposed
model, HybridConfusion, consistently outperforms
DawidSkene and SingleConfusion on both syn-
thetic and real-world data sets.

The rest of this paper is organized as follows. We
elaborate on the spectrum of probabilistic models in
Sections 2, and report on experiments on synthetic
and real-world data in Sections 3 and 4, respectively.
With related work discussed in Section 5, Section 6
concludes this study.

2. A Spectrum of Probabilistic Models

Suppose we have N items rated by J judges on a K-
level metric. The metric can be either ordinal or cate-
gorical. Let ri,j be the rating of the ith item assigned
by the jth judge: ri,j ∈ {1, 2, · · · , K} if the jth judge
indeed rates the ith item and ri,j = 0 otherwise. We
use ti ∈ {1, 2, · · · , K} to denote the true label of the
ith item. The competency of the jth judge is modeled
by a confusion matrix Θ(j) ∈ RK×K with its (k, t) el-

ement Θ
(j)
k,t being the probability that the jth judge

will give a rating of t when ti = k. Collectively, we
denote ri = {ri,j}

J
j=1, r = {ri}

N
i=1, t = {ti}

N
i=1, and

Θ = {Θ(1), Θ(2), · · · , Θ(J)}, and use the hat notation
(̂) to denote the estimated value of the correspond-
ing parameter.

The spectrum of probabilistic models are plotted
in Figure 1. We start with a brief review of the
DawidSkene model (Figure 1(a)). It assumes that
the true rating of each item is sampled from a multi-
nomial distribution parameterized by ρ. Suppose the
sampled true label is k, then the rating assigned by
the jth judge is regarded as being sampled from an-
other multinomial distribution parameterized by the
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Algorithm 1 : Inference for DawidSkene

Input: Observed ratings r

Output: Estimated Θ̂, ρ̂ and t̂

Initialize:

ρ̂k = 1/K, Θ̂
(j)
k,t =

{
λ/(λ + K) if k = t

1/(λ + K) otherwise

Iterate until convergence:
E-step:

Zi,k =
ρk

∏J

j=1 I(ri,j 6= 0)Θ
(j)
k,ri,j∑K

k=1 ρk

∏J

j=1 I(ri,j 6= 0)Θ
(j)
k,ri,j

M-step:

Θ̂
(j)
k,t =

∑N

i=1 Zi,kI(ri,j = t)
∑K

t=1

∑N

i=1 Zi,kI(ri,j = t)

ρ̂k =

∑N

i=1 Zi,k∑K

k=1

∑N

i=1 Zi,k

Compute:

t̂i = arg max
k=1,2,··· ,K

Zi,k

kth row of the jth judge’s confusion matrix, namely,
Θ(j)(k, :), using the Matlab notation. The goal of the
inference is to recover the model parameters (Θ and
ρ) and the true ratings t. To be self-contained and to
compare with other models, the inference algorithm
is reproduced in Algorithm 1 from (Dawid & Skene,
1979). The particular way of initialization in Algo-
rithm 1 is to be consistent with HybridConfusion,
as to be discussed soon.

DawidSkene model imposes no regularization on the
individual confusion matrices, and hence possesses
(J ∗ K + 1) ∗ (K − 1) free parameters. In the first
place, the large number of free parameters endows
DawidSkene with high model capacity, but in the
second place, it means DawidSkene could easily over-
fit and suffer from not having enough data to fit. This
observation, as supported by experiments in Sections 3
and 4, prompts us to reduce the capacity by reducing
the number of free parameters. We therefore propose
the SingleConfusion model, which forces all judges
to have the same confusion matrix. Its graphical model
and inference algorithm are presented in Figure 1(b)
and Algorithm 2, respectively. SingleConfusion ef-
fectively reduces the number of free parameters to
K2 − 1, but unfortunately, proves to be too rigid to
model the variations across judges.

We can view DawidSkene and SingleConfusion

as two extremes under the same “TrueLabel +
Confusion” paradigm: one has too many parameters
while the other has too few. We therefore propose the

Algorithm 2 : Inference for SingleConfusion

Input: Observed ratings r

Output: Estimated Θ̂, ρ̂ and t̂

Initialize:

ρ̂k = 1/K, Θ̂k,t =

{
λ/(λ + K) if k = t

1/(λ + K) otherwise

Iterate until convergence:
E-step:

Zi,k =
ρk

∏K

t=1(Θk,t)
∑ J

j=1
I(ri,j=t)

∑K

k=1 ρk

∏K

t=1(Θk,t)
∑

J
j=1

I(ri,j=t)

M-step:

Θ̂k,t =

∑J

j=1

∑N

i=1 Zi,kI(ri,j = t)
∑K

t=1

∑J

j=1

∑N

i=1 Zi,kI(ri,j = t)

ρ̂k =

∑N

i=1 Zi,k∑K

k=1

∑N

i=1 Zi,k

Compute:

t̂i = arg max
k=1,2,··· ,K

Zi,k

HybridConfusion model, whose graphical model
is depicted in Figure 1(c). HybridConfusion

makes tradeoffs between DawidSkene and
SingleConfusion by allowing each judge to
still have her own confusion matrix but at the same
time regularizing them through Bayesian shrinkage.
Explicitly, HybridConfusion imposes that the
kth row of all confusion matrices are sampled from a
Dirichlet distribution parameterized by λk. Explicitly,
let

Λ =




λ + 1 1 . . . 1
1 λ + 1 . . . 1
...

...
. . .

...
1 1 . . . λ + 1


 =




λ1

λ2

...
λK


 ,

and it explains the choice of initialization in Algo-
rithm 1 and 2. To complete the Bayesian model, a
Dirichlet prior is imposed on ρ as well with parame-
ter α. We used Markov Chain Monte Carlo (Gibbs
sampling in particular) to perform the inference on
HybridConfusion using the BUGS software pack-
age (Lunn et al., 2000). We run 3 Gibbs sampler with
1000 burn-in and obtain 100 examples with a thin-
ning interval of 10 in all experiments. After collect-
ing the samples, we take the mode rating from the
true label samples as the recovered true label, and the
mean values of samples about ρ and Θ as the esti-
mates ρ̂ and Θ̂. As the K labels are mutually ex-
changeable, all of the three models need to deal with
the un-identifiability issue, and we tackle this using a
method similar to (Stephens, 1999). In all the exper-
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(a) Θ(1) (b) Θ(2) (c) Θ(3)

Figure 2. Confusion Matrices in the Simulation

iments, α = [1, 1, · · · , 1] and λ = 3 unless otherwise
noted.

The usage of λ = 3 imposes a moderate prior that
implies judges are more likely to rate correctly in gen-
eral. Depending on the applications, one could put
a stronger prior by using a bigger λ or impose con-
fusion patterns based on prior knowledge (e.g., a big-
ger value for Λ1,3 if judges tend to misjudge “1” as
“3”). In the case of ordinal rating, one could even
put on a diagonal-decaying prior (i.e., Λi,j1 > Λi,j2 if
|j1 − i| < |j2 − i|), indicating the belief that a judge
is more likely to confuse adjacent levels than nonad-
jacent ones. In short, HybridConfusion provides a
flexible way to encode different prior knowledge, but
the best setting, as always, depends on the application
and prior knowledge.

3. Experiments on Synthetic Data

In this section, we use synthetic data to examine the
accuracy of different models in recovering the ground
truth, i.e., estimating the true model parameters and
labels. We synthesize the data using the DawidSkene

model for three judges (J = 3) on a three-level met-
ric (K = 3). For convenience, we denote the three
levels by “A”, “B”, and “C”, whose prior probabili-
ties are assumed to be 0.05, 0.15 and 0.8, respectively.
The three confusion matrices Θ are shown in Fig-
ure 2. As can be seen, the three matrices are not cho-
sen to favor any models, and in fact, Θ(1) even disfa-
vors HybridConfusion because HybridConfusion

never estimates any cells to be 0.

Throughout the experiments in this section, we exam-
ine the accuracy of recovering the ground truth for
different models by varying the number of items. In-
tuitively, the more rated items, the more accurately
these models would recover the ground truth. The
number of items is varied from 3000 down to 5, which
renders a complete view of the model efficacy w.r.t.
the data size. The data is synthesized in each run,
and all the reported numbers are the average across
100 runs. We also include the majority voting (de-
noted by MajorityVote) algorithm in the compar-
ison. MajorityVote takes the mode rating as the
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(a) Recovery Rate (λ = 3)
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(b) Recovery Rate (λ = 10)

Figure 3. Accuracy in Recovering the True Label with Dif-
ferent λ’s

true rating, and breaks ties randomly when there are
multiple modes. Once the true label is determined, ρ̂

and Θ̂ are obtained through simple counting.

3.1. Experimental Results

Figure 3(a) plots the accuracy in recovering the true
labels when the number of items decreases from 3000
to 5, using the default parameter λ = 3. First, we
observe that since the data is synthesized through
DawidSkene, the best recovery is indeed achieved
by DawidSkene, provided abundant data is avail-
able. But when data becomes smaller, DawidSkene

quickly deteriorates, as a result of overfitting. On the
other hand, we see that HybridConfusion is con-
sistently above 0.9, only being slightly weaker than
DawidSkene when N = 2000, 3000, and significantly
outperforming DawidSkene otherwise. This consis-
tent performance should be attributed to the Bayesian
shrinkage. Third, we see MajorityVote is pretty
flat, and effectively saturates after N ≥ 20. Finally,
SingleConfusion is the weakest and twisted with
MajorityVote when N ≥ 50. The inferior perfor-
mance of SingleConfusion is likely due to its strict
constraint to have all judges share the same confusion
matrix whereas in fact they are quite different (see
Figure 2). Figure 3(b) presents the same experiments
with λ = 10, which deliver similar messages.

The accuracy of recovering ρ by HybridConfusion,
DawidSkene, and SingleConfusion with varying
numbers of items are plotted in Figure 4. Each bar
represents the recovered ρ̂1, ρ̂2 and ρ̂3 for a given al-
gorithm when a certain of number of items are given.
The recovered ρ by MajorityVote is consistently
around (0.1, 0.15, 0.75) regardless of the number of
items, and hence not plotted in Figure 4. We see that
both HybridConfusion and DawidSkene can ex-
actly recover the true ρ with enough data whereas
SingleConfusion misses the target even when 3000
items are provided.
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(a) HybridConfusion
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(b) DawidSkene
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(c) SingleConfusion

Figure 4. Accuracy in Recovering ρ by Different Models
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(a) Accuracy in Recovering Θ(1)
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(b) Accuracy in Recovering Θ(2)
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(c) Accuracy in Recovering Θ(3)

Figure 5. Mean Absolute Error in Recovering Θ

Finally, Figure 5 plots the accuracy in recovering the
confusion matrices, as measured by the Mean Absolute
Error (MAE),

MAE(Θ̂(i), Θ(i)) =
1

K2

K∑

k=1

K∑

t=1

|Θ̂
(i)
k,t − Θ

(i)
k,t|.

Figure 5(a) plots the MAE of different models in
recovering Θ(1) when the number of items varies.
Again, we have seen that DawidSkene gives the
best recovery, but only when enough ratings are
available, and it clearly deteriorates with fewer and
fewer data. HybridConfusion, on the other hand,
is very accurate, and barely decays when N gets
smaller. SingleConfusion remains the worst per-
forming model but MajorityVote appears very
competitive. The same trend on relative performance
of different models is confirmed in Figures 5(b) and
5(c) as well.

As a short conclusion, we observe that
HybridConfusion is comparable to DawidSkene

when abundant data is available even if the data
is synthesized by DawidSkene. DawidSkene

quickly deteriorates when data becomes scarce,

but HybridConfusion remains very accurate in
recovering the ground truth, which clearly demon-
strates the efficacy of Bayesian shrinkage. But, to
be fair, DawidSkene is about 4 times faster than
HybridConfusion.

4. Experiments on Real-World Data

In this section, we report on the experimental results
on a real-world data set that motivates the study. As
explained in Section 1, we use a set of “monitoring”
(query, URL) pairs to gauge judge quality. For each
(query, URL) pair, a judge is expected to assign it into
one of the five categories Bad, Fair, Good, Excellent,
Perfect (denoted by 1 to 5, respectively), based on her
assessment of the relevance according to a set of writ-
ten guidelines. This “monitoring” set is chosen to be
“hard” to maximally differentiate judge qualities. A
“super-judge”, who supposedly best understands the
judgment guidelines, gives the gold rating to each pair
in the set. The quality of each judge is then determined
based on the deviation from gold ratings. Because
only a few super-judges are available, quality calibra-
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(a) Data Visualization
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(b) “Memoryless” Mode
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(c) “Memory” Mode

Figure 6. Experiments on Real-World Data Set

tion based on existing gold labels usually suffers from
data scarcity. For example, a lot of cells in the confu-
sion matrices would be zero. Therefore, in this section,
we explore to what extent each model would recover
the gold rating based on individual ratings from reg-
ular judges, and furthermore whether the estimated
parameters by each model could help further lift the
prediction accuracy.

One monitoring set consists of 6008 ratings from 148
judges on 48 (query, url) pairs, as visualized in Fig-
ure 6(a). Each row corresponds to a distinct (query,
url) pair, and each column to a distinct human judge.
For eligibility, (query, url) pairs and judges are sorted
based on the average rating across judges and items,
respectively. The gold labels are listed in the last col-
umn. There are only 6 colors of interest in the color-
bar: blue for 1 (Bad) to red for 5 (Perfect) with white
for 0 denoting unrated item by judges. As can be seen,
some judges only rated a few (query, URL) pairs, and
they are generally new judges hired into the system.
They are not excluded in order to keep the fidelity to
real-world data.

We report experiment results using the average across
100 runs. In each run, we first sample R ratings for
each item, and then randomly partition the 48 (query,
URL) pairs into training and testing sets with a ra-
tio of 2:1. We compare the accuracy of predicting the
gold label on the testing set with different models. In
order to see if any models could recover the unknown
true parameters to some extent from the training set,
we test the prediction accuracy in two different modes.
The first is the “Memoryless” mode where the true la-
bel is predicted solely based on the testing set, and
the second is the “Memory” mode where each (query,
URL) pair is predicted using the estimated parameters
obtained from the training set. Explicitly, the “Mem-
ory” mode computes the posterior of the rating based

on Θ̂, ρ̂ and ri using

p(zi = k|ri; Θ̂, ρ̂) =
ρ̂k

∏J

j=1 I(ri,j 6= 0)Θ̂
(j)
k,ri,j∑K

k=1 ρ̂k

∏J

j=1 I(ri,j 6= 0)Θ̂
(j)
k,ri,j

,

and assigns the ith item to the most probable rating.

The “Memoryless” model corresponds to the cold-start
scenario where no knowledge about the judges is avail-
able, whereas the “Memory” mode mimics the case
where the confusion matrices and label distributions
are known a priori from previous data. However, in
neither mode is the gold label of the training set used,
and the gold label of testing data is merely used in
measuring the prediction accuracy. The goal of this
study aims to comparing the recovery accuracy of the
true label using different models, and to what extent
the estimated parameters could help; the goal is not
to build a state-of-the-art prediction model for true
labels.

Figures 6(b) and 6(c) plot the prediction accuracy
w.r.t. the number of ratings per item in the two modes,
respectively. In the “Memoryless” mode (Figure 6(b)),
all models deteriorate as fewer ratings are available to
each item, and DawidSkene deteriorates the most,
yet another piece of evidence of overfitting. In con-
trast, HybridConfusion performs very well and does
not deteriorate much even when R = 5. Surprisingly,
MajorityVote is very close to HybridConfusion,
and the performance gap is no longer as wide as that
shown in Figure 3. A likely reason for the strong per-
formance of MajorityVote is that our judges are
all well-trained and understand that their quality is
continually monitored; hence their consensus is usu-
ally much stronger than that between crowdsourcing
judges. Nevertheless, we still see HybridConfusion

beats MajorityVote with a small but consistent
margin with 30 or more ratings per item (p-value
< 0.05 using one-sided Fisher Sign Test).
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Figure 6(c) compares the performance in the “Mem-
ory” mode, where we see that HybridConfusion sig-
nificantly beats all other three models and is visibly
better than HybridConfusion in the “Memoryless”
mode. This suggests that HybridConfusion indeed
recovers the true parameters to some extent, which
helps lift the prediction accuracy. In contrast, we see
the accuracy of MajorityVote drops significantly
from the “Memoryless” mode, indicating the inferior
quality of the estimated parameters due to data spar-
sity.

Finally, we peek into the estimated confusion matri-
ces by DawidSkene and HybridConfusion to un-
derstand what the estimates look like. Figure 7 plots
the average confusion matrices for DawidSkene and
HybridConfusion, as averaged across all judges over
the 100 runs with R = 5. At the first glimpse, we see
the confusion matrix from DawidSkene is much more
chaotic than that from HybridConfusion, which vi-
sually demonstrates the efficacy of Bayesian shrink-
age in HybridConfusion. Within each cell, we also
mark out the probability value with the standard de-
viation in the parenthesis. Clearly, we see that confu-
sion matrices from DawidSkene are more divergent
from each other (bigger standard deviations as shown
in Figure 7(a)). In contrast, the confusion matrix
from HybridConfusion (Figure 7(b)) exhibits nat-
ural diagonal-decaying phenomena, and the standard
deviations are generally much smaller. Now that our
judges are well-trained, we believe the latter is closer
to the truth than the former, although we have no way
to solicit the ground truth.

5. Related Work

The need of large amount of labeled data, as inher-
ent in many machine learning algorithms and appli-
cations, cultivates the advent of online crowdsourcing
services (e.g., Amazon’s MechanicTurk). Readers in-
terested in a detailed survey in this area are referred
to (Ipeirotis & Paritosh, 2011). While the low cost
of crowdsourcing renders multiple labels on numer-
ous items practically feasible, it also calls for princi-
pled approaches to distilling true labels from the less-
than-expert ratings, among other issues (Sheng et al.,
2008). Because of the importance of this problem,
recent years have seen increasing interests in this
problem, e.g., (Whitehill et al., 2009; Welinder et al.,
2010; Welinder & Perona, 2010; Raykar et al., 2009).
Specifically, Whitehill et al. (2009) models the prob-
ability that a judge would rate an item correctly as
a logistic function of the product between the qual-
ity of the judge and the difficulty of the item. This

leads to a model that not only recovers the true la-
bel, but estimates the judge quality (represented by a
single number) and item difficulty at the same time.
But since the model deals with the probability that
a judge hits the right rating, it does not provide de-
tailed diagnostic information about judge confusions.
(Welinder et al., 2010; Welinder & Perona, 2010) later
generalizes (Whitehill et al., 2009) by introducing a
high-dimensional concept of item difficulty, and shows
a small but consistent improvement, but again it fails
to provide the confusion matrices. In this paper, we
focus on models under the “TrueLabel + Confusion”
paradigm for diagnostic insights into judge confusion.

In addition to the different focus, the judges in our
setting are also different from previous work: our in-
house judges are well trained, decently paid, and be-
nign in general, which directly contrasts to the anony-
mous non-expert or even malicious judges in crowd-
sourcing services. This entails two consequences: first,
we do not worry about malicious judges, and second,
MajorityVote becomes much more competitive, al-
though it is still inferior to our proposed model.

The spectrum of models as presented here are not re-
stricted to ratings from human judges, and in fact
they can be effectively used to combine any ratings
from any sources, be it human judges or predictive
models. Previously, Ghahramani and Kim presented
some preliminary results using a model similar to
HybridConfusion (Ghahramani & chul Kim, 2003),
but failed to examine how the performance varies when
the numbers of items and judges change. This paper
fills in the gap, and to the best of our knowledge, this
is the first piece of work generalizing DawidSkene

to a spectrum of models with a comparative study of
their pros and cons. Finally, another piece of work
worth mentioning is (Raykar et al., 2009), which per-
forms supervised learning with the true labels recov-
ered as a by-product. The method is shown superior
to the conventional two-stage alternative (i.e., training
models after recovering the true labels, as practiced by
(Smyth et al., 1994)). Their focus is on building ac-
curate predictive models rather than diagnosing judge
qualities.

6. Conclusion

In this paper, we generalize the DawidSkene model
into a spectrum of probabilistic models under the
“TrueLabel+Confusion” paradigm. Our proposed
models, SingleConfusion and HybridConfusion,
complement the well-known DawidSkene model
to overcome its overfitting drawbacks. We study
their pros and cons using both synthetic and real-
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(a) Confusion Matrix: DawidSkene (b) Confusion Matrix: HybridConfusion

Figure 7. A Peek into the Average Confusion Matrix

world data, and demonstrate the advantages of
HybridConfusion in various settings. In the future,
we would optimize the judgement pipeline based on the
recovered confusion matrices, e.g., through targeted
training and guideline revisions.
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